114,314 research outputs found

    Micro-expression Recognition using Spatiotemporal Texture Map and Motion Magnification

    Get PDF
    Micro-expressions are short-lived, rapid facial expressions that are exhibited by individuals when they are in high stakes situations. Studying these micro-expressions is important as these cannot be modified by an individual and hence offer us a peek into what the individual is actually feeling and thinking as opposed to what he/she is trying to portray. The spotting and recognition of micro-expressions has applications in the fields of criminal investigation, psychotherapy, education etc. However due to micro-expressions’ short-lived and rapid nature; spotting, recognizing and classifying them is a major challenge. In this paper, we design a hybrid approach for spotting and recognizing micro-expressions by utilizing motion magnification using Eulerian Video Magnification and Spatiotemporal Texture Map (STTM). The validation of this approach was done on the spontaneous micro-expression dataset, CASMEII in comparison with the baseline. This approach achieved an accuracy of 80% viz. an increase by 5% as compared to the existing baseline by utilizing 10-fold cross validation using Support Vector Machines (SVM) with a linear kernel

    Testing the utility of a data-driven approach for assessing BMI from face images

    Get PDF
    Several lines of evidence suggest that facial cues of adiposity may be important for human social interaction. However, tests for quantifiable cues of body mass index (BMI) in the face have examined only a small number of facial proportions and these proportions were found to have relatively low predictive power. Here we employed a data-driven approach in which statistical models were built using principal components (PCs) derived from objectively defined shape and color characteristics in face images. The predictive power of these models was then compared with models based on previously studied facial proportions (perimeter-to-area ratio, width-to-height ratio, and cheek-to-jaw width). Models based on 2D shape-only PCs, color-only PCs, and 2D shape and color PCs combined each performed significantly and substantially better than models based on one or more of the previously studied facial proportions. A non-linear PC model considering both 2D shape and color PCs was the best predictor of BMI. These results highlight the utility of a “bottom-up”, data-driven approach for assessing BMI from face images

    End-to-end 3D face reconstruction with deep neural networks

    Full text link
    Monocular 3D facial shape reconstruction from a single 2D facial image has been an active research area due to its wide applications. Inspired by the success of deep neural networks (DNN), we propose a DNN-based approach for End-to-End 3D FAce Reconstruction (UH-E2FAR) from a single 2D image. Different from recent works that reconstruct and refine the 3D face in an iterative manner using both an RGB image and an initial 3D facial shape rendering, our DNN model is end-to-end, and thus the complicated 3D rendering process can be avoided. Moreover, we integrate in the DNN architecture two components, namely a multi-task loss function and a fusion convolutional neural network (CNN) to improve facial expression reconstruction. With the multi-task loss function, 3D face reconstruction is divided into neutral 3D facial shape reconstruction and expressive 3D facial shape reconstruction. The neutral 3D facial shape is class-specific. Therefore, higher layer features are useful. In comparison, the expressive 3D facial shape favors lower or intermediate layer features. With the fusion-CNN, features from different intermediate layers are fused and transformed for predicting the 3D expressive facial shape. Through extensive experiments, we demonstrate the superiority of our end-to-end framework in improving the accuracy of 3D face reconstruction.Comment: Accepted to CVPR1

    On Robust Face Recognition via Sparse Encoding: the Good, the Bad, and the Ugly

    Get PDF
    In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates

    Single-trial analysis of EEG during rapid visual discrimination: enabling cortically-coupled computer vision

    Get PDF
    We describe our work using linear discrimination of multi-channel electroencephalography for single-trial detection of neural signatures of visual recognition events. We demonstrate the approach as a methodology for relating neural variability to response variability, describing studies for response accuracy and response latency during visual target detection. We then show how the approach can be utilized to construct a novel type of brain-computer interface, which we term cortically-coupled computer vision. In this application, a large database of images is triaged using the detected neural signatures. We show how ‘corticaltriaging’ improves image search over a strictly behavioral response
    • 

    corecore