63,322 research outputs found

    Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

    Get PDF
    Object category localization is a challenging problem in computer vision. Standard supervised training requires bounding box annotations of object instances. This time-consuming annotation process is sidestepped in weakly supervised learning. In this case, the supervised information is restricted to binary labels that indicate the absence/presence of object instances in the image, without their locations. We follow a multiple-instance learning approach that iteratively trains the detector and infers the object locations in the positive training images. Our main contribution is a multi-fold multiple instance learning procedure, which prevents training from prematurely locking onto erroneous object locations. This procedure is particularly important when using high-dimensional representations, such as Fisher vectors and convolutional neural network features. We also propose a window refinement method, which improves the localization accuracy by incorporating an objectness prior. We present a detailed experimental evaluation using the PASCAL VOC 2007 dataset, which verifies the effectiveness of our approach.Comment: To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    An Effective Feature Selection Method Based on Pair-Wise Feature Proximity for High Dimensional Low Sample Size Data

    Full text link
    Feature selection has been studied widely in the literature. However, the efficacy of the selection criteria for low sample size applications is neglected in most cases. Most of the existing feature selection criteria are based on the sample similarity. However, the distance measures become insignificant for high dimensional low sample size (HDLSS) data. Moreover, the variance of a feature with a few samples is pointless unless it represents the data distribution efficiently. Instead of looking at the samples in groups, we evaluate their efficiency based on pairwise fashion. In our investigation, we noticed that considering a pair of samples at a time and selecting the features that bring them closer or put them far away is a better choice for feature selection. Experimental results on benchmark data sets demonstrate the effectiveness of the proposed method with low sample size, which outperforms many other state-of-the-art feature selection methods.Comment: European Signal Processing Conference 201

    Deep Adaptive Feature Embedding with Local Sample Distributions for Person Re-identification

    Full text link
    Person re-identification (re-id) aims to match pedestrians observed by disjoint camera views. It attracts increasing attention in computer vision due to its importance to surveillance system. To combat the major challenge of cross-view visual variations, deep embedding approaches are proposed by learning a compact feature space from images such that the Euclidean distances correspond to their cross-view similarity metric. However, the global Euclidean distance cannot faithfully characterize the ideal similarity in a complex visual feature space because features of pedestrian images exhibit unknown distributions due to large variations in poses, illumination and occlusion. Moreover, intra-personal training samples within a local range are robust to guide deep embedding against uncontrolled variations, which however, cannot be captured by a global Euclidean distance. In this paper, we study the problem of person re-id by proposing a novel sampling to mine suitable \textit{positives} (i.e. intra-class) within a local range to improve the deep embedding in the context of large intra-class variations. Our method is capable of learning a deep similarity metric adaptive to local sample structure by minimizing each sample's local distances while propagating through the relationship between samples to attain the whole intra-class minimization. To this end, a novel objective function is proposed to jointly optimize similarity metric learning, local positive mining and robust deep embedding. This yields local discriminations by selecting local-ranged positive samples, and the learned features are robust to dramatic intra-class variations. Experiments on benchmarks show state-of-the-art results achieved by our method.Comment: Published on Pattern Recognitio

    Face Identification by a Cascade of Rejection Classifiers

    Full text link
    Nearest neighbor search is commonly employed in face recognition but it does not scale well to large dataset sizes. A strategy to combine rejection classifiers into a cascade for face identification is proposed in this paper. A rejection classifier for a pair of classes is defined to reject at least one of the classes with high confidence. These rejection classifiers are able to share discriminants in feature space and at the same time have high confidence in the rejection decision. In the face identification problem, it is possible that a pair of known individual faces are very dissimilar. It is very unlikely that both of them are close to an unknown face in the feature space. Hence, only one of them needs to be considered. Using a cascade structure of rejection classifiers, the scope of nearest neighbor search can be reduced significantly. Experiments on Face Recognition Grand Challenge (FRGC) version 1 data demonstrate that the proposed method achieves significant speed up and an accuracy comparable with the brute force Nearest Neighbor method. In addition, a graph cut based clustering technique is employed to demonstrate that the pairwise separability of these rejection classifiers is capable of semantic grouping.National Science Foundation (EIA-0202067, IIS-0329009); Office of Naval Research (N00014-03-1-0108
    • …
    corecore