23,729 research outputs found

    Łódź Leisure Time Space as Perceived by Liceum Students and Members of the ‘Universities of the Third Age’

    Get PDF
    The article is a summary of research into the perception of leisure time space, conducted in 2014 among Liceum students (aged 16-19) and members of the ‘Universities of the Third Age’ (U3A) in Łódź. The author compared perceptions of the idea of leisure time by both of these groups, studied how they spent it and described the factors which have a significant influence. Next, he analysed different approaches to the urban space of Łódź as well as comparing them to the spatial range and the types of visited places and events

    Four-dimensional understanding of quantum mechanics and Bell violation

    Full text link
    While our natural intuition suggests us that we live in 3D space evolving in time, modern physics presents fundamentally different picture: 4D spacetime, Einstein's block universe, in which we travel in thermodynamically emphasized direction: arrow of time. Suggestions for such nonintuitive and nonlocal living in kind of "4D jello" come among others from: Lagrangian mechanics we use from QFT to GR saying that history between fixed past and future situation is the one optimizing action, special relativity saying that different velocity observers have different present 3D hypersurface and time direction, general relativity deforming shape of the entire spacetime up to switching time and space below the black hole event horizon, or the CPT theorem concluding fundamental symmetry between past and future. Accepting this nonintuitive living in 4D spacetime: with present moment being in equilibrium between past and future - minimizing tension as action of Lagrangian, leads to crucial surprising differences from intuitive "evolving 3D" picture, in which we for example conclude satisfaction of Bell inequalities - violated by the real physics. Specifically, particle in spacetime becomes own trajectory: 1D submanifold of 4D, making that statistical physics should consider ensembles like Boltzmann distribution among entire paths, what leads to quantum behavior as we know from Feynman's Euclidean path integrals or similar Maximal Entropy Random Walk (MERW). It results for example in Anderson localization, or the Born rule with squares - allowing for violation of Bell inequalities. Specifically, quantum amplitude turns out to describe probability at the end of half-spacetime from a given moment toward past or future, to randomly get some value of measurement we need to "draw it" from both time directions, getting the squares of Born rules.Comment: 13 pages, 18 figure
    corecore