3 research outputs found

    Studying Brain Function in Children Using Magnetoencephalography

    Get PDF
    Magnetoencephalography (MEG) is a non-invasive neuroimaging technique which directly measures magnetic fields produced by the electrical activity of the human brain. MEG is quiet and less likely to induce claustrophobia compared with magnetic resonance imaging (MRI). It is therefore a promising tool for investigating brain function in young children. However, analysis of MEG data from pediatric populations is often complicated by head movement artefacts which arise as a consequence of the requirement for a spatially-fixed sensor array that is not affixed to the child's head. Minimizing head movements during MEG sessions can be particularly challenging as young children are often unable to remain still during experimental tasks. The protocol presented here aims to reduce head movement artefacts during pediatric MEG scanning. Prior to visiting the MEG laboratory, families are provided with resources that explain the MEG system and the experimental procedures in simple, accessible language. An MEG familiarization session is conducted during which children are acquainted with both the researchers and the MEG procedures. They are then trained to keep their head still whilst lying inside an MEG simulator. To help children feel at ease in the novel MEG environment, all of the procedures are explained through the narrative of a space mission. To minimize head movement due to restlessness, children are trained and assessed using fun and engaging experimental paradigms. In addition, children's residual head movement artefacts are compensated for during the data acquisition session using a real-time head movement tracking system. Implementing these child-friendly procedures is important for improving data quality, minimizing participant attrition rates in longitudinal studies, and ensuring that families have a positive research experience

    A Novel Dynamic Morphed Stimuli Set to Assess Sensitivity to Identity and Emotion Attributes in Faces

    Get PDF
    Face-based tasks are used ubiquitously in the study of human perception and cognition. Video-based (dynamic) face stimuli are increasingly utilized by researchers because they have higher ecological validity than static images. However, there are few ready-to-use dynamic stimulus sets currently available to researchers that include non-emotional and non-face control stimuli. This paper outlines the development of three original dynamic stimulus sets: a set of emotional faces (fear and disgust), a set of non-emotional faces, and a set of car animations. Morphing software was employed to vary the intensity of the expression shown and to vary the similarity between actors. Manipulating these dimensions permits us to create tasks of varying difficulty that can be optimized to detect more subtle differences in face-processing ability. Using these new stimuli, two preliminary experiments were conducted to evaluate different aspects of facial identity recognition, emotion recognition, and non-face object discrimination. Results suggest that these five different tasks successfully avoided floor and ceiling effects in a healthy sample. A second experiment found that dynamic versions of the emotional stimuli were recognized more accurately than static versions, both for labeling, and discrimination paradigms. This indicates that, like previous emotion-only stimuli sets, the use of dynamic stimuli confers an advantage over image-based stimuli. These stimuli therefore provide a useful resource for researchers looking to investigate both emotional and non-emotional face-processing using dynamic stimuli. Moreover, these stimuli vary across crucial dimensions (i.e., face similarity and intensity of emotion) which allows researchers to modify task difficulty as required

    Face processing in the brains of pre-school aged children measured with MEG

    Get PDF
    There are two competing theories concerning the development of face perception: a late maturation account and an early maturation account. Magnetoencephalography (MEG) neuroimaging holds promise for adjudicating between the two opposing accounts by providing objective neurophysiological measures of face processing, with sufficient temporal resolution to isolate face-specific brain responses from those associated with other sensory, cognitive and motor processes. The current study used a customized child MEG system to measure M100 and M170 brain responses in 15 children aged three to six years while they viewed faces, cars and their phase-scrambled counterparts. Compared to adults tested using the same stimuli in a conventional MEG system, children showed significantly larger and later M100 responses. Children's M170 responses, derived by subtracting the responses to phase-scrambled images from the corresponding images (faces or cars) were delayed in latency but otherwise resembled the adult M170. This component has not been obtained in previous studies of young children tested using conventional adult MEG systems. However children did show a markedly reduced M170 response to cars in comparison to adults. This may reflect children's lack of expertise with cars relative to faces. Taken together, these data are in accord with recent behavioural and neuroimaging data that support early maturation of the basic face processing functions.11 page(s
    corecore