108 research outputs found

    A prismatic classifying space

    Full text link
    A qualgebra GG is a set having two binary operations that satisfy compatibility conditions which are modeled upon a group under conjugation and multiplication. We develop a homology theory for qualgebras and describe a classifying space for it. This space is constructed from GG-colored prisms (products of simplices) and simultaneously generalizes (and includes) simplicial classifying spaces for groups and cubical classifying spaces for quandles. Degenerate cells of several types are added to the regular prismatic cells; by duality, these correspond to "non-rigid" Reidemeister moves and their higher dimensional analogues. Coupled with GG-coloring techniques, our homology theory yields invariants of knotted trivalent graphs in R3\mathbb{R}^3 and knotted foams in R4\mathbb{R}^4. We re-interpret these invariants as homotopy classes of maps from S2S^2 or S3S^3 to the classifying space of GG.Comment: 28 pages, 24 figure

    Two-sided combinatorial volume bounds for non-obtuse hyperbolic polyhedra

    Full text link
    We give a method for computing upper and lower bounds for the volume of a non-obtuse hyperbolic polyhedron in terms of the combinatorics of the 1-skeleton. We introduce an algorithm that detects the geometric decomposition of good 3-orbifolds with planar singular locus and underlying manifold the 3-sphere. The volume bounds follow from techniques related to the proof of Thurston's Orbifold Theorem, Schl\"afli's formula, and previous results of the author giving volume bounds for right-angled hyperbolic polyhedra.Comment: 36 pages, 19 figure

    Lower bounds on the number of realizations of rigid graphs

    Get PDF
    Computing the number of realizations of a minimally rigid graph is a notoriously difficult problem. Towards this goal, for graphs that are minimally rigid in the plane, we take advantage of a recently published algorithm, which is the fastest available method, although its complexity is still exponential. Combining computational results with the theory of constructing new rigid graphs by gluing, we give a new lower bound on the maximal possible number of (complex) realizations for graphs with a given number of vertices. We extend these ideas to rigid graphs in three dimensions and we derive similar lower bounds, by exploiting data from extensive Gr\"obner basis computations

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Two-player envy-free multi-cake division

    Full text link
    We introduce a generalized cake-cutting problem in which we seek to divide multiple cakes so that two players may get their most-preferred piece selections: a choice of one piece from each cake, allowing for the possibility of linked preferences over the cakes. For two players, we show that disjoint envy-free piece selections may not exist for two cakes cut into two pieces each, and they may not exist for three cakes cut into three pieces each. However, there do exist such divisions for two cakes cut into three pieces each, and for three cakes cut into four pieces each. The resulting allocations of pieces to players are Pareto-optimal with respect to the division. We use a generalization of Sperner's lemma on the polytope of divisions to locate solutions to our generalized cake-cutting problem.Comment: 15 pages, 7 figures, see related work at http://www.math.hmc.edu/~su/papers.htm

    Topological dualities in the Ising model

    Full text link
    We relate two classical dualities in low-dimensional quantum field theory: Kramers-Wannier duality of the Ising and related lattice models in 22 dimensions, with electromagnetic duality for finite gauge theories in 33 dimensions. The relation is mediated by the notion of boundary field theory: Ising models are boundary theories for pure gauge theory in one dimension higher. Thus the Ising order/disorder operators are endpoints of Wilson/'t Hooft defects of gauge theory. Symmetry breaking on low-energy states reflects the multiplicity of topological boundary states. In the process we describe lattice theories as (extended) topological field theories with boundaries and domain walls. This allows us to generalize the duality to non-abelian groups; finite, semi-simple Hopf algebras; and, in a different direction, to finite homotopy theories in arbitrary dimension.Comment: 62 pages, 22 figures; v2 adds important reference [S]; v2 has reworked introduction, additional reference [KS], and minor changes; v4 for publication in Geometry and Topology has all new figures and a few minor changes and additional reference

    Magic and antimagic labeling of graphs

    Get PDF
    "A bijection mapping that assigns natural numbers to vertices and/or edges of a graph is called a labeling. In this thesis, we consider graph labelings that have weights associated with each edge and/or vertex. If all the vertex weights (respectively, edge weights) have the same value then the labeling is called magic. If the weight is different for every vertex (respectively, every edge) then we called the labeling antimagic. In this thesis we introduce some variations of magic and antimagic labelings and discuss their properties and provide corresponding labeling schemes. There are two main parts in this thesis. One main part is on vertex labeling and the other main part is on edge labeling."Doctor of Philosoph
    corecore