5,007 research outputs found

    Face image super-resolution using 2D CCA

    Get PDF
    In this paper a face super-resolution method using two-dimensional canonical correlation analysis (2D CCA) is presented. A detail compensation step is followed to add high-frequency components to the reconstructed high-resolution face. Unlike most of the previous researches on face super-resolution algorithms that first transform the images into vectors, in our approach the relationship between the high-resolution and the low-resolution face image are maintained in their original 2D representation. In addition, rather than approximating the entire face, different parts of a face image are super-resolved separately to better preserve the local structure. The proposed method is compared with various state-of-the-art super-resolution algorithms using multiple evaluation criteria including face recognition performance. Results on publicly available datasets show that the proposed method super-resolves high quality face images which are very close to the ground-truth and performance gain is not dataset dependent. The method is very efficient in both the training and testing phases compared to the other approaches. © 2013 Elsevier B.V

    Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions

    Get PDF
    Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose tu use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available datasets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.Comment: 12 pages, 5 figures, 3 table

    Sufficient Canonical Correlation Analysis

    Get PDF
    Canonical correlation analysis (CCA) is an effective way to find two appropriate subspaces in which Pearson’s correlation coefficients are maximized between projected random vectors. Due to its well-established theoretical support and relatively efficient computation, CCA is widely used as a joint dimension reduction tool and has been successfully applied to many image processing and computer vision tasks. However, as reported, the traditional CCA suffers from overfitting in many practical cases. In this paper, we propose sufficient CCA (S-CCA) to relieve CCA’s overfitting problem, which is inspired by the theory of sufficient dimension reduction. The effectiveness of S-CCA is verified both theoretically and experimentally. Experimental results also demonstrate that our S-CCA outperforms some of CCA’s popular extensions during the prediction phase, especially when severe overfitting occurs

    Cali-Sketch: Stroke Calibration and Completion for High-Quality Face Image Generation from Poorly-Drawn Sketches

    Get PDF
    Image generation task has received increasing attention because of its wide application in security and entertainment. Sketch-based face generation brings more fun and better quality of image generation due to supervised interaction. However, When a sketch poorly aligned with the true face is given as input, existing supervised image-to-image translation methods often cannot generate acceptable photo-realistic face images. To address this problem, in this paper we propose Cali-Sketch, a poorly-drawn-sketch to photo-realistic-image generation method. Cali-Sketch explicitly models stroke calibration and image generation using two constituent networks: a Stroke Calibration Network (SCN), which calibrates strokes of facial features and enriches facial details while preserving the original intent features; and an Image Synthesis Network (ISN), which translates the calibrated and enriched sketches to photo-realistic face images. In this way, we manage to decouple a difficult cross-domain translation problem into two easier steps. Extensive experiments verify that the face photos generated by Cali-Sketch are both photo-realistic and faithful to the input sketches, compared with state-of-the-art methodsComment: 10 pages, 12 figure
    • …
    corecore