5,694 research outputs found

    Hallucinating optimal high-dimensional subspaces

    Full text link
    Linear subspace representations of appearance variation are pervasive in computer vision. This paper addresses the problem of robustly matching such subspaces (computing the similarity between them) when they are used to describe the scope of variations within sets of images of different (possibly greatly so) scales. A naive solution of projecting the low-scale subspace into the high-scale image space is described first and subsequently shown to be inadequate, especially at large scale discrepancies. A successful approach is proposed instead. It consists of (i) an interpolated projection of the low-scale subspace into the high-scale space, which is followed by (ii) a rotation of this initial estimate within the bounds of the imposed ``downsampling constraint''. The optimal rotation is found in the closed-form which best aligns the high-scale reconstruction of the low-scale subspace with the reference it is compared to. The method is evaluated on the problem of matching sets of (i) face appearances under varying illumination and (ii) object appearances under varying viewpoint, using two large data sets. In comparison to the naive matching, the proposed algorithm is shown to greatly increase the separation of between-class and within-class similarities, as well as produce far more meaningful modes of common appearance on which the match score is based.Comment: Pattern Recognition, 201

    Robust Principal Component Analysis?

    Full text link
    This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces

    Toward Guaranteed Illumination Models for Non-Convex Objects

    Full text link
    Illumination variation remains a central challenge in object detection and recognition. Existing analyses of illumination variation typically pertain to convex, Lambertian objects, and guarantee quality of approximation in an average case sense. We show that it is possible to build V(vertex)-description convex cone models with worst-case performance guarantees, for non-convex Lambertian objects. Namely, a natural verification test based on the angle to the constructed cone guarantees to accept any image which is sufficiently well-approximated by an image of the object under some admissible lighting condition, and guarantees to reject any image that does not have a sufficiently good approximation. The cone models are generated by sampling point illuminations with sufficient density, which follows from a new perturbation bound for point images in the Lambertian model. As the number of point images required for guaranteed verification may be large, we introduce a new formulation for cone preserving dimensionality reduction, which leverages tools from sparse and low-rank decomposition to reduce the complexity, while controlling the approximation error with respect to the original cone
    • …
    corecore