4,437 research outputs found

    Extended LBP based Facial Expression Recognition System for Adaptive AI Agent Behaviour

    Get PDF
    Automatic facial expression recognition is widely used for various applications such as health care, surveillance and human-robot interaction. In this paper, we present a novel system which employs automatic facial emotion recognition technique for adaptive AI agent behaviour. The proposed system is equipped with kirsch operator based local binary patterns for feature extraction and diverse classifiers for emotion recognition. First, we nominate a novel variant of the local binary pattern (LBP) for feature extraction to deal with illumination changes, scaling and rotation variations. The features extracted are then used as input to the classifier for recognizing seven emotions. The detected emotion is then used to enhance the behaviour selection of the artificial intelligence (AI) agents in a shooter game. The proposed system is evaluated with multiple facial expression datasets and outperformed other state-of-the-art models by a significant margin

    Generalized local N-ary patterns for texture classification

    Full text link
    Local Binary Pattern (LBP) has been well recognised and widely used in various texture analysis applications of computer vision and image processing. It integrates properties of texture structural and statistical texture analysis. LBP is invariant to monotonic gray-scale variations and has also extensions to rotation invariant texture analysis. In recent years, various improvements have been achieved based on LBP. One of extensive developments was replacing binary representation with ternary representation and proposed Local Ternary Pattern (LTP). This paper further generalises the local pattern representation by formulating it as a generalised weight problem of Bachet de Meziriac and proposes Local N-ary Pattern (LNP). The encouraging performance is achieved based on three benchmark datasets when compared with its predecessors. © 2013 IEEE

    Noise Tolerant Descriptor for Texture Classification

    No full text
    International audienceAmong many texture descriptors, the LBP-based representation emerged as an attractive approach thanks to its low complexity and effectiveness. Many variants have been proposed to deal with several limitations of the basic approach like the small spatial support or the noise sensitivity. This paper presents a new method to construct an effective texture descriptor addressing those limitations by combining three features: (1) a circular average filter is applied before calculating the Complemented Local Binary Pattern (CLBP), (2) the histogram of CLBPs is calculated by weighting the contribution of every local pattern according to the gradient magnitude, and (3) the image features are calculated at different scales using a pyramidal framework. An efficient calculation of the pyramid using integral images, together with a simple construction of the multi-scale histogram based on concatenation, make the proposed approach both fast and memory efficient. Experimental results on different texture classification databases show the good results of the method, and its excellent noise robustness, compared to recent LBP-based methods

    Innovative local texture descriptors with application to eye detection

    Get PDF
    Local Binary Patterns (LBP), which is one of the well-known texture descriptors, has broad applications in pattern recognition and computer vision. The attractive properties of LBP are its tolerance to illumination variations and its computational simplicity. However, LBP only compares a pixel with those in its own neighborhood and encodes little information about the relationship of the local texture with the features. This dissertation introduces a new Feature Local Binary Patterns (FLBP) texture descriptor that can compare a pixel with those in its own neighborhood as well as in other neighborhoods and encodes the information of both local texture and features. The features encoded in FLBP are broadly defined, such as edges, Gabor wavelet features, and color features. Specifically, a binary image is first derived by extracting feature pixels from a given image, and then a distance vector field is obtained by computing the distance vector between each pixel and its nearest feature pixel defined in the binary image. Based on the distance vector field and the FLBP parameters, the FLBP representation of the given image is derived. The feasibility of the proposed FLBP is demonstrated on eye detection using the BioID and the FERET databases. Experimental results show that the FLBP method significantly improves upon the LBP method in terms of both the eye detection rate and the eye center localization accuracy. As LBP is sensitive to noise especially in near-uniform image regions, Local Ternary Patterns (LTP) was proposed to address this problem by extending LBP to three-valued codes. However, further research reveals that both LTP and LBP achieve similar results for face and facial expression recognition, while LTP has a higher computational cost than LBP. To improve upon LTP, this dissertation introduces another new local texture descriptor: Local Quaternary Patterns (LQP) and its extension, Feature Local Quaternary Patterns (FLQP). LQP encodes four relationships of local texture, and therefore, it includes more information of local texture than the LBP and the LTP. FLQP, which encodes both local and feature information, is expected to perform even better than LQP for texture description and pattern analysis. The LQP and FLQP are applied to eye detection on the BioID database. Experimental results show that both FLQP and LQP achieve better eye detection performance than FLTP, LTP, FLBP and LBP. The FLQP method achieves the highest eye detection rate

    Face Recognition using Multi Region Prominent LBP Representation

    Get PDF
    Various face recognition methods are derived using local features among them the Local Binary Pattern (LBP) approach is very famous. The histogram techniques based on LBP is a complex task. Later Uniform Local Binary Pattern (ULBP) is derived on LBP, based on the bitwise transitions and ULBP’s are treated as the fundamental property of texture. The ULBP approach treated all Non-Uniform Local Binary Patterns’ (NULBP) into one miscellaneous label. Recently we have derived Prominent LBP (PLBP), Maximum PLBP (MPLBP) and Smallest PLBP (SPLBP). The PLBP consists of the majority of the ULBP’s and some of the NULBP’s. The basic disadvantage of these various variants of LBP’s  is they are basically local approaches and completely failed in representing features derived from large regions or macrostructures, which are very much essential for faces. This paper derives PLBP’s on the large region. The rectangular region of this paper is assumed with a size of multiples of three and PLBPs are evaluated on dividing each region into multiple regions. The proposed Multi Region-PLBP (MR-PLBP) approach is tested on three facial databases namely Yale, Indian and AT&T ORL. The experimental results show the proposed approach significantly outperforms the other LBP based face recognition methods

    A Noise-Aware Coding Scheme for Texture Classification

    Get PDF
    Texture-based analysis of images is a very common and much discussed issue in the fields of computer vision and image processing. Several methods have already been proposed to codify texture micro-patterns (texlets) in images. Most of these methods perform well when a given image is noise-free, but real world images contain different types of signal-independent as well as signal-dependent noises originated from different sources, even from the camera sensor itself. Hence, it is necessary to differentiate false textures appearing due to the noises, and thus, to achieve a reliable representation of texlets. In this proposal, we define an adaptive noise band (ANB) to approximate the amount of noise contamination around a pixel up to a certain extent. Based on this ANB, we generate reliable codes named noise tolerant ternary pattern (NTTP) to represent the texlets in an image. Extensive experiments on several datasets from renowned texture databases, such as the Outex and the Brodatz database, show that NTTP performs much better than the state-of-the-art methods

    Features for matching people in different views

    No full text
    There have been significant advances in the computer vision field during the last decade. During this period, many methods have been developed that have been successful in solving challenging problems including Face Detection, Object Recognition and 3D Scene Reconstruction. The solutions developed by computer vision researchers have been widely adopted and used in many real-life applications such as those faced in the medical and security industry. Among the different branches of computer vision, Object Recognition has been an area that has advanced rapidly in recent years. The successful introduction of approaches such as feature extraction and description has been an important factor in the growth of this area. In recent years, researchers have attempted to use these approaches and apply them to other problems such as Content Based Image Retrieval and Tracking. In this work, we present a novel system that finds correspondences between people seen in different images. Unlike other approaches that rely on a video stream to track the movement of people between images, here we present a feature-based approach where we locate a target’s new location in an image, based only on its visual appearance. Our proposed system comprises three steps. In the first step, a set of features is extracted from the target’s appearance. A novel algorithm is developed that allows extraction of features from a target that is particularly suitable to the modelling task. In the second step, each feature is characterised using a combined colour and texture descriptor. Inclusion of information relating to both colour and texture of a feature add to the descriptor’s distinctiveness. Finally, the target’s appearance and pose is modelled as a collection of such features and descriptors. This collection is then used as a template that allows us to search for a similar combination of features in other images that correspond to the target’s new location. We have demonstrated the effectiveness of our system in locating a target’s new position in an image, despite differences in viewpoint, scale or elapsed time between the images. The characterisation of a target as a collection of features also allows our system to robustly deal with the partial occlusion of the target
    • …
    corecore