4,564 research outputs found

    Stochastic Optimization for Deep CCA via Nonlinear Orthogonal Iterations

    Full text link
    Deep CCA is a recently proposed deep neural network extension to the traditional canonical correlation analysis (CCA), and has been successful for multi-view representation learning in several domains. However, stochastic optimization of the deep CCA objective is not straightforward, because it does not decouple over training examples. Previous optimizers for deep CCA are either batch-based algorithms or stochastic optimization using large minibatches, which can have high memory consumption. In this paper, we tackle the problem of stochastic optimization for deep CCA with small minibatches, based on an iterative solution to the CCA objective, and show that we can achieve as good performance as previous optimizers and thus alleviate the memory requirement.Comment: in 2015 Annual Allerton Conference on Communication, Control and Computin

    Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition

    Get PDF
    This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a "low-rank and sparse" matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art algorithms on simulated and real data. The results show that R-GoDec is the fastest among the robust algorithms.Comment: The material contained in this paper is part of a manuscript submitted to CVI

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Statistical learning for predictive targeting in online advertising

    Get PDF

    Side information in robust principal component analysis: algorithms and applications

    Get PDF
    Dimensionality reduction and noise removal are fundamental machine learning tasks that are vital to artificial intelligence applications. Principal component analysis has long been utilised in computer vision to achieve the above mentioned goals. Recently, it has been enhanced in terms of robustness to outliers in robust principal component analysis. Both convex and non-convex programs have been developed to solve this new formulation, some with exact convergence guarantees. Its effectiveness can be witnessed in image and video applications ranging from image denoising and alignment to background separation and face recognition. However, robust principal component analysis is by no means perfect. This dissertation identifies its limitations, explores various promising options for improvement and validates the proposed algorithms on both synthetic and real-world datasets. Common algorithms approximate the NP-hard formulation of robust principal component analysis with convex envelopes. Though under certain assumptions exact recovery can be guaranteed, the relaxation margin is too big to be squandered. In this work, we propose to apply gradient descent on the Burer-Monteiro bilinear matrix factorisation to squeeze this margin given available subspaces. This non-convex approach improves upon conventional convex approaches both in terms of accuracy and speed. On the other hand, oftentimes there is accompanying side information when an observation is made. The ability to assimilate such auxiliary sources of data can ameliorate the recovery process. In this work, we investigate in-depth such possibilities for incorporating side information in restoring the true underlining low-rank component from gross sparse noise. Lastly, tensors, also known as multi-dimensional arrays, represent real-world data more naturally than matrices. It is thus advantageous to adapt robust principal component analysis to tensors. Since there is no exact equivalence between tensor rank and matrix rank, we employ the notions of Tucker rank and CP rank as our optimisation objectives. Overall, this dissertation carefully defines the problems when facing real-world computer vision challenges, extensively and impartially evaluates the state-of-the-art approaches, proposes novel solutions and provides sufficient validations on both simulated data and popular real-world datasets for various mainstream computer vision tasks.Open Acces
    corecore