432 research outputs found

    MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation

    Full text link
    In this work, we propose a novel and efficient method for articulated human pose estimation in videos using a convolutional network architecture, which incorporates both color and motion features. We propose a new human body pose dataset, FLIC-motion, that extends the FLIC dataset with additional motion features. We apply our architecture to this dataset and report significantly better performance than current state-of-the-art pose detection systems

    A Decade of Neural Networks: Practical Applications and Prospects

    Get PDF
    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization

    A Prototype of EEG System for IoT

    Get PDF
    [Abstract] In this work, we develop open source hardware and software for eye state classification and integrate it with a protocol for the Internet of Things (IoT). We design and build the hardware using a reduced number of components and with a very low-cost. Moreover, we propose a method for the detection of open eyes (oE) and closed eyes (cE) states based on computing a power ratio between different frequency bands of the acquired signal. We compare several real- and complex-valued transformations combined with two decision strategies: a threshold-based method and a linear discriminant analysis. Simulation results show both classifier accuracies and their corresponding system delays.Xunta de Galicia; ED431G2019/01)Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-RXunta de Galicia; ED481A-2018/156Xunta de Galicia; ED431G 2019/01This work has been funded by the Xunta de Galicia (ED431G2019/01), the Agencia Estatal de Investigacion of Spain (TEC2016-75067-C4-1-R) and ERDF funds of the EU (AEI/FEDER, UE), and the predoctoral Grant No. ED481A-2018/156 (Francisco Laport). CITIC as a Research Centre of the Galician University System is financed by the Conselleria de Educacion, Universidades e Formacion Profesional (Xunta de Galicia) through the ERDF (80%), Operational Programme ERDF Galicia 2014–2020 and the remaining 20% by the Secretaria Xeral de Universidades (Ref. ED431G 2019/01

    AugLoss: A Robust Augmentation-based Fine Tuning Methodology

    Full text link
    Deep Learning (DL) models achieve great successes in many domains. However, DL models increasingly face safety and robustness concerns, including noisy labeling in the training stage and feature distribution shifts in the testing stage. Previous works made significant progress in addressing these problems, but the focus has largely been on developing solutions for only one problem at a time. For example, recent work has argued for the use of tunable robust loss functions to mitigate label noise, and data augmentation (e.g., AugMix) to combat distribution shifts. As a step towards addressing both problems simultaneously, we introduce AugLoss, a simple but effective methodology that achieves robustness against both train-time noisy labeling and test-time feature distribution shifts by unifying data augmentation and robust loss functions. We conduct comprehensive experiments in varied settings of real-world dataset corruption to showcase the gains achieved by AugLoss compared to previous state-of-the-art methods. Lastly, we hope this work will open new directions for designing more robust and reliable DL models under real-world corruptions.Comment: 10 pages, 6 figures, 6 table

    Identifying Restaurants Proposing Novel Kinds of Cuisines: Using Yelp Reviews

    Get PDF
    These days with TV-shows and starred chefs, new kinds of cuisines appear in the market. The main cuisines like French, Italian, Japanese, Chinese and Indian are always appreciated but they are no longer the most popular. The new trend is the fusion cuisine, which is obtained by combining different main cuisines. The opening of a new restaurant proposing new kinds of cuisine produces a lot of excitement in people. They feel the need to try it and be part of this new culture. Yelp is a platform which publishes crowd sourced reviews about different businesses, in particular, restaurants. For some restaurants in Yelp if the kind of cuisine is available, usually, there is a tag only for the main cuisines, but there is no information for the fusion cuisine. There is a need to develop a system which is able to identify restaurants proposing fusion cuisine (novel or unknown cuisines). This proposal is to address the novelty detection task using Yelp reviews. The idea is that the semi-supervised Machine Learning models trained only on the reviews of restaurants proposing the main cuisine will be able to discriminate between restaurants providing the main cuisine and restaurants providing the novel ones. We propose effective novelty detection approaches for the unknown cuisine type identification problem using Long Short Term Memory (LSTM), autoencoder and Term-Frequency and Inverse Document Frequency(). Our main idea is to obtain features from LSTM, autoencoder and TF-IDF and use these features with standard semi-supervised novelty detection algorithms like Gaussian Mixture Model, Isolation Forest and One-class Support Vector Machines (SVM) to identify the unknown cuisines. We conducted extensive experiments that prove the effectiveness of our approaches. The score that we obtained has a very high discrimination power because the best value of AUROC for the novelty detection problem is 0.85 from LSTM. LSTM outperforms our baseline model of TF-IDF and the main motivation is due to its ability to retain only the useful parts of a sentence
    corecore