2 research outputs found

    Relationship between oxidation, stresses, morphology, local resistivity, and optical properties of TiO2, Gd2O3, Er2O3, SiO2 thin films on SiC

    Get PDF
    The relationship between internal mechanical stresses, surface morphology, nanoscale electrical properties, and optical characteristics in TiO2, Gd2O3, Er2O3, and SiO2 thin films on SiC substrates was investigated. The oxide films were synthesized using the rapid thermal annealing and analyzed through scanning spreading resistance microscopy, photoluminescence, and absorption spectroscopy. Tensile stresses were found in the films, they are attributed to thermal and lattice mismatch, oxidation, and grain boundaries. These stresses influence on surface morphology, resistivity variations, and photoluminescence intensity. Surface roughness and grain structure were found to correlate with variations in resistivity, which were attributed to conductive pathways along grain boundaries and possible metallic phases. Photoluminescence intensity was also observed to correlate with estimated lattice mismatch strain. Gd2O3/SiC exhibited the fewest defects, while Er2O3 and TiO2 showed more, with Er2O3 being the most mismatched and roughest. The results indicate that internal strains in oxide thin films on SiC substrates can influence on surface morphology, leading to formation of defects and spatial inhomogeneity. These fluctuations in local conductivity and luminescence center density have significant implications for dielectric and optical applications. The study provides insights for future processing refinements to mitigate internal strains and enhance the performance of oxide thin films in semiconductor and optical technologies

    Thermal flow sensors for harsh environments

    Get PDF
    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 Β°C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application
    corecore