2 research outputs found

    The Design, Fabrication and Practical Evaluation of Body-centric Passive RFID Platforms

    Get PDF
    Passive ultra-high-frequency (UHF) radio-frequency identification (RFID) technology is increasingly being recognized as a compelling approach to utilizing energy- and costefficient wireless platforms for a wireless body area network (WBAN). The development of WBANs has stimulated a lot of research over recent years, as they can offer remarkable benefits for the healthcare and welfare sectors, as well as having innovative sportsrelated applications.This thesis is to evaluate and develop the RFID tags used in an integrated wearable RFID platform working in a realistic environment. Each of the wearable antennas were specifically designed for a target part of the body, such as the back or the hand. The antennas were manufactured in different ways, using copper tape, electro-textiles (Etextile) and embroidered conductive threads. After they had been produced, the tags were subjected to on-body measurement and reliability tests. The reliability tests were performed under tough conditions in which the tags were stretched, for instance, or exposed to high humidity and washing. Our results show that the tags can perform well when worn on-body in a harsh environment.This thesis provides several integrated solutions for wireless wearable devices. By different RFID antenna design and fabrication methods, the RFID tag can be used as the moisture and strain sensor with lightweight, small size, flexible pattern and great dailyuse reliability

    Unobtrusive Implementation of Wireless Electronics into Clothing

    Get PDF
    Research in flexible and stretchable electronics (FSE) has gained significant momentum in recent years due to being mechanically durable without compromising electrical performance. Newer materials and manufacturing methods are studied for efficiently developing FSEs. These materials and methods can be applied to the widespread development of wearable electronics, particularly clothing-integrated electronics. However, seamlessly integrating clothing into electronics has been quite challenging, where achieving an optimal balance between electrical performance and mechanical reliability is a key issue. This thesis aims to find innovative and novel solutions for integrating electronics into clothing, which could be mechanically durable, with limited compromise to their electrical functionality. This thesis combines 3D printing with passive radio frequency identification (RFID) technology to develop wireless platforms integrated into clothing. 3D printing was used to create encapsulants in which electronic components and antennas, designed with conductive yarns and textiles, were embedded. The wireless platforms developed in this study were tested for their mechanical reliability and evaluated for their wireless performance. This study then extended to RFID sensor development, where stimuli responsive materials were 3D printed onto textiles, and wireless performance concerning stimuli response were observed. This study observed that 3D printing encapsulated RFID-based wireless platforms functioned well regarding their wireless performance, despite exposure to moisture and mechanical stress. Although in their preliminary stages, the sensor platforms were also optimally responsive to moisture and temperature changes. Future studies include further evaluating the 3D printing parameters and materials for better mechanical reliability and more extensive studies on the sensor platforms. The wireless platforms developed in this study can be further developed for applications related to health care, logistics, security, and sensing applications
    corecore