308 research outputs found

    Hierarchies of Inefficient Kernelizability

    Full text link
    The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the "kernelization" of Leaf Out Branching(k) into a disjunction over n instances of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations, we define a kernelization hardness hierarchy, akin to the M- and W-hierarchy of ordinary parameterized complexity, by the PPT-closure of problems that seem likely to be fundamentally hard for efficient Turing kernelization. We find that several previously considered problems are complete for our fundamental hardness class, including Min Ones d-SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique(k log n), the clique problem parameterized by k log n

    A quadratic kernel for computing the hybridization number of multiple trees

    Full text link
    It has recently been shown that the NP-hard problem of calculating the minimum number of hybridization events that is needed to explain a set of rooted binary phylogenetic trees by means of a hybridization network is fixed-parameter tractable if an instance of the problem consists of precisely two such trees. In this paper, we show that this problem remains fixed-parameter tractable for an arbitrarily large set of rooted binary phylogenetic trees. In particular, we present a quadratic kernel

    Parameterized Algorithms for Directed Maximum Leaf Problems

    Full text link
    We prove that finding a rooted subtree with at least kk leaves in a digraph is a fixed parameter tractable problem. A similar result holds for finding rooted spanning trees with many leaves in digraphs from a wide family L\cal L that includes all strong and acyclic digraphs. This settles completely an open question of Fellows and solves another one for digraphs in L\cal L. Our algorithms are based on the following combinatorial result which can be viewed as a generalization of many results for a `spanning tree with many leaves' in the undirected case, and which is interesting on its own: If a digraph DLD\in \cal L of order nn with minimum in-degree at least 3 contains a rooted spanning tree, then DD contains one with at least (n/2)1/51(n/2)^{1/5}-1 leaves

    Kernelizations for the hybridization number problem on multiple nonbinary trees

    Get PDF
    Given a finite set XX, a collection T\mathcal{T} of rooted phylogenetic trees on XX and an integer kk, the Hybridization Number problem asks if there exists a phylogenetic network on XX that displays all trees from T\mathcal{T} and has reticulation number at most kk. We show two kernelization algorithms for Hybridization Number, with kernel sizes 4k(5k)t4k(5k)^t and 20k2(Δ+1)20k^2(\Delta^+-1) respectively, with tt the number of input trees and Δ+\Delta^+ their maximum outdegree. Experiments on simulated data demonstrate the practical relevance of these kernelization algorithms. In addition, we present an nf(k)tn^{f(k)}t-time algorithm, with n=Xn=|X| and ff some computable function of kk

    An FPT Algorithm for Directed Spanning k-Leaf

    Get PDF
    An out-branching of a directed graph is a rooted spanning tree with all arcs directed outwards from the root. We consider the problem of deciding whether a given directed graph D has an out-branching with at least k leaves (Directed Spanning k-Leaf). We prove that this problem is fixed parameter tractable, when k is chosen as the parameter. Previously this was only known for restricted classes of directed graphs. The main new ingredient in our approach is a lemma that shows that given a locally optimal out-branching of a directed graph in which every arc is part of at least one out-branching, either an out-branching with at least k leaves exists, or a path decomposition with width O(k^3) can be found. This enables a dynamic programming based algorithm of running time 2^{O(k^3 \log k)} n^{O(1)}, where n=|V(D)|.Comment: 17 pages, 8 figure

    A survey of parameterized algorithms and the complexity of edge modification

    Get PDF
    The survey is a comprehensive overview of the developing area of parameterized algorithms for graph modification problems. It describes state of the art in kernelization, subexponential algorithms, and parameterized complexity of graph modification. The main focus is on edge modification problems, where the task is to change some adjacencies in a graph to satisfy some required properties. To facilitate further research, we list many open problems in the area.publishedVersio

    Parameterized Study of the Test Cover Problem

    Full text link
    We carry out a systematic study of a natural covering problem, used for identification across several areas, in the realm of parameterized complexity. In the {\sc Test Cover} problem we are given a set [n]={1,...,n}[n]=\{1,...,n\} of items together with a collection, T\cal T, of distinct subsets of these items called tests. We assume that T\cal T is a test cover, i.e., for each pair of items there is a test in T\cal T containing exactly one of these items. The objective is to find a minimum size subcollection of T\cal T, which is still a test cover. The generic parameterized version of {\sc Test Cover} is denoted by p(k,n,T)p(k,n,|{\cal T}|)-{\sc Test Cover}. Here, we are given ([n],T)([n],\cal{T}) and a positive integer parameter kk as input and the objective is to decide whether there is a test cover of size at most p(k,n,T)p(k,n,|{\cal T}|). We study four parameterizations for {\sc Test Cover} and obtain the following: (a) kk-{\sc Test Cover}, and (nk)(n-k)-{\sc Test Cover} are fixed-parameter tractable (FPT). (b) (Tk)(|{\cal T}|-k)-{\sc Test Cover} and (logn+k)(\log n+k)-{\sc Test Cover} are W[1]-hard. Thus, it is unlikely that these problems are FPT

    The Graph Motif problem parameterized by the structure of the input graph

    Full text link
    The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been mostly analyzed from the standpoint of parameterized complexity. The main parameters which came into consideration were the size of the multiset and the number of colors. Though, in the many applications of Graph Motif, the input graph originates from real-life and has structure. Motivated by this prosaic observation, we systematically study its complexity relatively to graph structural parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show that the problem remains intractable. For the FPT cases, we also give some kernelization lower bounds as well as some ETH-based lower bounds on the worst case running time. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first problem to behave this way.Comment: 24 pages, accepted in DAM, conference version in IPEC 201
    corecore