4,734 research outputs found

    Hardware/Software Co-design Applied to Reed-Solomon Decoding for the DMB Standard

    Get PDF
    This paper addresses the implementation of Reed- Solomon decoding for battery-powered wireless devices. The scope of this paper is constrained by the Digital Media Broadcasting (DMB). The most critical element of the Reed-Solomon algorithm is implemented on two different reconfigurable hardware architectures: an FPGA and a coarse-grained architecture: the Montium, The remaining parts are executed on an ARM processor. The results of this research show that a co-design of the ARM together with an FPGA or a Montium leads to a substantial decrease in energy consumption. The energy consumption of syndrome calculation of the Reed- Solomon decoding algorithm is estimated for an FPGA and a Montium by means of simulations. The Montium proves to be more efficient

    Real-time on-board obstacle avoidance for UAVs based on embedded stereo vision

    Get PDF
    In order to improve usability and safety, modern unmanned aerial vehicles (UAVs) are equipped with sensors to monitor the environment, such as laser-scanners and cameras. One important aspect in this monitoring process is to detect obstacles in the flight path in order to avoid collisions. Since a large number of consumer UAVs suffer from tight weight and power constraints, our work focuses on obstacle avoidance based on a lightweight stereo camera setup. We use disparity maps, which are computed from the camera images, to locate obstacles and to automatically steer the UAV around them. For disparity map computation we optimize the well-known semi-global matching (SGM) approach for the deployment on an embedded FPGA. The disparity maps are then converted into simpler representations, the so called U-/V-Maps, which are used for obstacle detection. Obstacle avoidance is based on a reactive approach which finds the shortest path around the obstacles as soon as they have a critical distance to the UAV. One of the fundamental goals of our work was the reduction of development costs by closing the gap between application development and hardware optimization. Hence, we aimed at using high-level synthesis (HLS) for porting our algorithms, which are written in C/C++, to the embedded FPGA. We evaluated our implementation of the disparity estimation on the KITTI Stereo 2015 benchmark. The integrity of the overall realtime reactive obstacle avoidance algorithm has been evaluated by using Hardware-in-the-Loop testing in conjunction with two flight simulators.Comment: Accepted in the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Scienc

    Electronics and data acquisition demonstrator for a kinetic inductance camera

    Full text link
    A prototype of digital frequency multiplexing electronics allowing the real time monitoring of kinetic inductance detector (KIDs) arrays for mm-wave astronomy has been developed. It requires only 2 coaxial cables for instrumenting a large array. For that, an excitation comb of frequencies is generated and fed through the detector. The direct frequency synthesis and the data acquisition relies heavily on a large FPGA using parallelized and pipelined processing. The prototype can instrument 128 resonators (pixels) over a bandwidth of 125 MHz. This paper describes the technical solution chosen, the algorithm used and the results obtained

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Type-driven automated program transformations and cost modelling for optimising streaming programs on FPGAs

    Get PDF
    In this paper we present a novel approach to program optimisation based on compiler-based type-driven program transformations and a fast and accurate cost/performance model for the target architecture. We target streaming programs for the problem domain of scientific computing, such as numerical weather prediction. We present our theoretical framework for type-driven program transformation, our target high-level language and intermediate representation languages and the cost model and demonstrate the effectiveness of our approach by comparison with a commercial toolchain

    An AER Spike-Processing Filter Simulator and Automatic VHDL Generator Based on Cellular Automata

    Get PDF
    Spike-based systems are neuro-inspired circuits implementations traditionally used for sensory systems or sensor signal processing. Address-Event- Representation (AER) is a neuromorphic communication protocol for transferring asynchronous events between VLSI spike-based chips. These neuro-inspired implementations allow developing complex, multilayer, multichip neuromorphic systems and have been used to design sensor chips, such as retinas and cochlea, processing chips, e.g. filters, and learning chips. Furthermore, Cellular Automata (CA) is a bio-inspired processing model for problem solving. This approach divides the processing synchronous cells which change their states at the same time in order to get the solution. This paper presents a software simulator able to gather several spike-based elements into the same workspace in order to test a CA architecture based on AER before a hardware implementation. Furthermore this simulator produces VHDL for testing the AER-CA into the FPGA of the USBAER AER-tool.Ministerio de Ciencia e InnovaciĂłn TEC2009-10639-C04-0
    • …
    corecore