16 research outputs found

    Sparse nonlinear optimization for signal processing and communications

    Get PDF
    This dissertation proposes three classes of new sparse nonlinear optimization algorithms for network echo cancellation (NEC), 3-D synthetic aperture radar (SAR) image reconstruction, and adaptive turbo equalization in multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications, respectively. For NEC, the proposed two proportionate affine projection sign algorithms (APSAs) utilize the sparse nature of the network impulse response (NIR). Benefiting from the characteristics of l₁-norm optimization, affine projection, and proportionate matrix, the new algorithms are more robust to impulsive interferences and colored input than the conventional adaptive algorithms. For 3-D SAR image reconstruction, the proposed two compressed sensing (CS) approaches exploit the sparse nature of the SAR holographic image. Combining CS with the range migration algorithms (RMAs), these approaches can decrease the load of data acquisition while recovering satisfactory 3-D SAR image through l₁-norm optimization. For MIMO UWA communications, a robust iterative channel estimation based minimum mean-square-error (MMSE) turbo equalizer is proposed for large MIMO detection. The MIMO channel estimation is performed jointly with the MMSE equalizer and the maximum a posteriori probability (MAP) decoder. The proposed MIMO detection scheme has been tested by experimental data and proved to be robust against tough MIMO channels. --Abstract, page iv

    Combinations of adaptive filters

    Get PDF
    Adaptive filters are at the core of many signal processing applications, ranging from acoustic noise supression to echo cancelation [1], array beamforming [2], channel equalization [3], to more recent sensor network applications in surveillance, target localization, and tracking. A trending approach in this direction is to recur to in-network distributed processing in which individual nodes implement adaptation rules and diffuse their estimation to the network [4], [5].The work of JerĂłnimo Arenas-GarcĂ­a and Luis Azpicueta-Ruiz was partially supported by the Spanish Ministry of Economy and Competitiveness (under projects TEC2011-22480 and PRI-PIBIN-2011-1266. The work of Magno M.T. Silva was partially supported by CNPq under Grant 304275/2014-0 and by FAPESP under Grant 2012/24835-1. The work of VĂ­tor H. Nascimento was partially supported by CNPq under grant 306268/2014-0 and FAPESP under grant 2014/04256-2. The work of Ali Sayed was supported in part by NSF grants CCF-1011918 and ECCS-1407712. We are grateful to the colleagues with whom we have shared discussions and coauthorship of papers along this research line, especially Prof. AnĂ­bal R. Figueiras-Vidal

    Reliability and security in low power circuits and systems

    Get PDF
    With the massive deployment of mobile devices in sensitive areas such as healthcare and defense, hardware reliability and security have become hot research topics in recent years. These topics, although different in definition, are usually correlated. This dissertation offers an in-depth treatment on enhancing the reliability and security of low power circuits and systems. The first part of the dissertation deals with the reliability of sub-threshold designs, which use supply voltage lower than the threshold voltage (Vth) of transistors to reduce power. The exponential relationship between delay and Vth significantly jeopardizes their reliability due to process variation induced timing violations. In order to address this problem, this dissertation proposes a novel selective body biasing scheme. In the first work, the selective body biasing problem is formulated as a linearly constrained statistical optimization model, and the adaptive filtering concept is borrowed from the signal processing community to develop an efficient solution. However, since the adaptive filtering algorithm lacks theoretical justification and guaranteed convergence rate, in the second work, a new approach based on semi-infinite programming with incremental hypercubic sampling is proposed, which demonstrates better solution quality with shorter runtime. The second work deals with the security of low power crypto-processors, equipped with Random Dynamic Voltage Scaling (RDVS), in the presence of Correlation Power Analysis (CPA) attacks. This dissertation firstly demonstrates that the resistance of RDVS to CPA can be undermined by lowering power supply voltage. Then, an alarm circuit is proposed to resist this attack. However, the alarm circuit will lead to potential denial-of-service due to noise-triggered false alarms. A non-zero sum game model is then formulated and the Nash Equilibria is analyzed --Abstract, page iii

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Preface

    Get PDF

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Performance analysis for wireless G (IEEE 802.11G) and wireless N (IEEE 802.11N) in outdoor environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. The comparison consider on coverage area (mobility), throughput and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g
    corecore