9 research outputs found

    Conception of a new LDPC decoder with hardware implementation on FPGA card

    Full text link

    FPGA implementation of LDPC soft-decision decoders based DCSK for spread spectrum applications

    Get PDF
    Spread spectrum (SS) communications have attracted interest because of their channel attenuation immunity and low intercept potential. Apart from some extra features such as basic transceiver structures, chaotic communication would be the analog alternative to digital SS systems. Differential chaos shift keying (DCSK) systems, non-periodic and random characteristics among chaos carriers as well as their interaction with soft data are designed based on low-density parity-check (LDPC) codes in this brief. Because of simple structure, and glorious ability to correct errors. Using the Xilinx kintex7 FPGA development kit, we investigate the hardware performance and resource requirement tendencies of the DCSK communication system based on LDPC decoding algorithms (Prob. Domain, Log Domain and Min-Sum) over AWGN channel. The results indicate that the proposed system model has substantial improvements in the performance of the bit error rate (BER) and the real-time process. The Min-Sum decoder has relatively fewer FPGA resources than the other decoders. The implemented system will achieve 10-4 BER efficiency with 5 dB associate Eb/No as a coding gain

    Розробка крипто-кодових конструкцій на LDPC-кодах

    Get PDF
    The results of developing post-quantum algorithms of McEliece and Niederreiter crypto-code constructs based on LDPC (Low-Density Parity-Check) codes are presented. With the rapid growth of computing capabilities of mobile technologies and the creation of wireless mesh and sensor networks, Internet of Things technologies, and smart technologies on their basis, information security is becoming an urgent problem. At the same time, there is a need to consider security in two circuits, internal (directly within the network infrastructure) and external (cloud technologies). In such conditions, it is necessary to integrate threats to both the internal and external security circuits. This allows you to take into account not only the hybridity and synergy of modern targeted threats, but also the level of significance (degree of secrecy) of information flows and information circulating in both the internal and external security circuits. The concept of building security based on two circuits is proposed. To ensure the security of wireless mobile channels, it is proposed to use McEliece and Niederreiter crypto-code constructs based on LDPC codes, which allows integration into the credibility technology of IEEE 802.15.4, IEEE 802.16 standards. This approach provides the required level of security services (confidentiality, integrity, authenticity) in a full-scale quantum computer. Practical security technologies based on the proposed crypto-code constructs, online IP telephony and the Smart Home system based on the use of an internal server are consideredПриведені результати розробки постквантових алгоритмів крипто-кодових конструкцій Мак-Еліса та Нідеррайтера на кодах LDPC (Low Density Parity Check) із малою щільністю перевірок на парність. В умовах стрімкого зростання обчислювальних можливостей мобільних технологій та створення на їх базі бездротових Mesh-, сенсорних-мереж, технологій Інтернет-речей, smart-технологій актуальною проблемою стає забезпечення безпеки інформації. При цьому виникає необхідність розгляду безпеки у двох контурах внутрішньому (безпосередньо всередині інфраструктури мережі) та зовнішньому (хмарних технологіях). У таких умовах необхідно комплексувати загрози як на внутрішній контур безпеки, так і на зовнішній контур. Це дозволяє не лише враховувати гібридність та синергізм сучасних цільових загроз, але й враховувати рівень значущості (ступінь секретності) інформаційних потоків та інформації, що циркулює як у внутрішньому, так і зовнішньому контурі безпеки. Пропонується концепція побудови безпеки на основі двох контурів. Для забезпечення безпеки бездротових мобільних каналів пропонується використовувати крипто-кодові конструкції Мак-Еліса та Нідеррайтера на LDPC-кодах, що дозволяє інтегруватися у технології забезпечення вірогідності стандартів IEEE 802.15.4, IEEE 802.16. Такий підхід дозволяє забезпечити необхідний рівень послуг безпеки (конфіденційності, цілісності автентичності) в умовах повномасштабного квантового комп'ютера. Розглядаються практичні технології забезпечення безпеки, на основі пропонованих крипто-кодових конструкцій, IP-телефонії в онлайн режимі та системи “Розумний дім” на основі використання внутрішнього сервер

    A Fully-Parallel Turbo Decoding Algorithm

    Full text link

    A survey of FPGA-based LDPC decoders

    No full text
    Low-Density Parity Check (LDPC) error correction decoders have become popular in communications systems, as a benefit of their strong error correction performance and their suitability to parallel hardware implementation. A great deal of research effort has been invested into LDPC decoder designs that exploit the flexibility, the high processing speed and the parallelism of Field-Programmable Gate Array (FPGA) devices. FPGAs are ideal for design prototyping and for the manufacturing of small-production-run devices, where their in-system programmability makes them far more cost-effective than Application-Specific Integrated Circuits (ASICs). However, the FPGA-based LDPC decoder designs published in the open literature vary greatly in terms of design choices and performance criteria, making them a challenge to compare. This paper explores the key factors involved in FPGA-based LDPC decoder design and presents an extensive review of the current literature. In-depth comparisons are drawn amongst 140 published designs (both academic and industrial) and the associated performance trade-offs are characterised, discussed and illustrated. Seven key performance characteristics are described, namely their processing throughput, latency, hardware resource requirements, error correction capability, processing energy efficiency, bandwidth efficiency and flexibility. We offer recommendations that will facilitate fairer comparisons of future designs, as well as opportunities for improving the design of FPGA-based LDPC decoder
    corecore