348 research outputs found

    Software Porting of a 3D Reconstruction Algorithm to Razorcam Embedded System on Chip

    Get PDF
    A method is presented to calculate depth information for a UAV navigation system from Keypoints in two consecutive image frames using a monocular camera sensor as input and the OpenCV library. This method was first implemented in software and run on a general-purpose Intel CPU, then ported to the RazorCam Embedded Smart-Camera System and run on an ARM CPU onboard the Xilinx Zynq-7000. The results of performance and accuracy testing of the software implementation are then shown and analyzed, demonstrating a successful port of the software to the RazorCam embedded system on chip that could potentially be used onboard a UAV with tight constraints of size, weight, and power. The potential impacts will be seen through the continuation of this research in the Smart ES lab at University of Arkansas

    ReS2tAC -- UAV-Borne Real-Time SGM Stereo Optimized for Embedded ARM and CUDA Devices

    Full text link
    With the emergence of low-cost robotic systems, such as unmanned aerial vehicle, the importance of embedded high-performance image processing has increased. For a long time, FPGAs were the only processing hardware that were capable of high-performance computing, while at the same time preserving a low power consumption, essential for embedded systems. However, the recently increasing availability of embedded GPU-based systems, such as the NVIDIA Jetson series, comprised of an ARM CPU and a NVIDIA Tegra GPU, allows for massively parallel embedded computing on graphics hardware. With this in mind, we propose an approach for real-time embedded stereo processing on ARM and CUDA-enabled devices, which is based on the popular and widely used Semi-Global Matching algorithm. In this, we propose an optimization of the algorithm for embedded CUDA GPUs, by using massively parallel computing, as well as using the NEON intrinsics to optimize the algorithm for vectorized SIMD processing on embedded ARM CPUs. We have evaluated our approach with different configurations on two public stereo benchmark datasets to demonstrate that they can reach an error rate as low as 3.3%. Furthermore, our experiments show that the fastest configuration of our approach reaches up to 46 FPS on VGA image resolution. Finally, in a use-case specific qualitative evaluation, we have evaluated the power consumption of our approach and deployed it on the DJI Manifold 2-G attached to a DJI Matrix 210v2 RTK unmanned aerial vehicle (UAV), demonstrating its suitability for real-time stereo processing onboard a UAV

    ReS²tAC—UAV-borne real-time SGM stereo optimized for embedded ARM and CUDA devices

    Get PDF
    With the emergence of low-cost robotic systems, such as unmanned aerial vehicle, the importance of embedded high-performance image processing has increased. For a long time, FPGAs were the only processing hardware that were capable of high-performance computing, while at the same time preserving a low power consumption, essential for embedded systems. However, the recently increasing availability of embedded GPU-based systems, such as the NVIDIA Jetson series, comprised of an ARM CPU and a NVIDIA Tegra GPU, allows for massively parallel embedded computing on graphics hardware. With this in mind, we propose an approach for real-time embedded stereo processing on ARM and CUDA-enabled devices, which is based on the popular and widely used Semi-Global Matching algorithm. In this, we propose an optimization of the algorithm for embedded CUDA GPUs, by using massively parallel computing, as well as using the NEON intrinsics to optimize the algorithm for vectorized SIMD processing on embedded ARM CPUs. We have evaluated our approach with different configurations on two public stereo benchmark datasets to demonstrate that they can reach an error rate as low as 3.3%. Furthermore, our experiments show that the fastest configuration of our approach reaches up to 46 FPS on VGA image resolution. Finally, in a use-case specific qualitative evaluation, we have evaluated the power consumption of our approach and deployed it on the DJI Manifold 2-G attached to a DJI Matrix 210v2 RTK unmanned aerial vehicle (UAV), demonstrating its suitability for real-time stereo processing onboard a UAV

    Semi-dense SLAM on an FPGA SoC

    No full text
    Deploying advanced Simultaneous Localisation and Mapping, or SLAM, algorithms in autonomous low-power robotics will enable emerging new applications which require an accurate and information rich reconstruction of the environment. This has not been achieved so far because accuracy and dense 3D reconstruction come with a high computational complexity. This paper discusses custom hardware design on a novel platform for embedded SLAM, an FPGA-SoC, combining an embedded CPU and programmable logic on the same chip. The use of programmable logic, tightly integrated with an efficient multicore embedded CPU stands to provide an effective solution to this problem. In this work an average framerate of more than 4 frames/second for a resolution of 320×240 has been achieved with an estimated power of less than 1 Watt for the custom hardware. In comparison to the software-only version, running on a dual-core ARM processor, an acceleration of 2× has been achieved for LSD-SLAM, without any compromise in the quality of the result

    Kodizajn arhitekture i algoritama za lokalizacijumobilnih robota i detekciju prepreka baziranih namodelu

    No full text
    This thesis proposes SoPC (System on a Programmable Chip) architectures for efficient embedding of vison-based localization and obstacle detection tasks in a navigational pipeline on autonomous mobile robots. The obtained results are equivalent or better in comparison to state-ofthe- art. For localization, an efficient hardware architecture that supports EKF-SLAM's local map management with seven-dimensional landmarks in real time is developed. For obstacle detection a novel method of object recognition is proposed - detection by identification framework based on single detection window scale. This framework allows adequate algorithmic precision and execution speeds on embedded hardware platforms.Ova teza bavi se dizajnom SoPC (engl. System on a Programmable Chip) arhitektura i algoritama za efikasnu implementaciju zadataka lokalizacije i detekcije prepreka baziranih na viziji u kontekstu autonomne robotske navigacije. Za lokalizaciju, razvijena je efikasna računarska arhitektura za EKF-SLAM algoritam, koja podržava skladištenje i obradu sedmodimenzionalnih orijentira lokalne mape u realnom vremenu. Za detekciju prepreka je predložena nova metoda prepoznavanja objekata u slici putem prozora detekcije fiksne dimenzije, koja omogućava veću brzinu izvršavanja algoritma detekcije na namenskim računarskim platformama

    A survey on real-time 3D scene reconstruction with SLAM methods in embedded systems

    Full text link
    The 3D reconstruction of simultaneous localization and mapping (SLAM) is an important topic in the field for transport systems such as drones, service robots and mobile AR/VR devices. Compared to a point cloud representation, the 3D reconstruction based on meshes and voxels is particularly useful for high-level functions, like obstacle avoidance or interaction with the physical environment. This article reviews the implementation of a visual-based 3D scene reconstruction pipeline on resource-constrained hardware platforms. Real-time performances, memory management and low power consumption are critical for embedded systems. A conventional SLAM pipeline from sensors to 3D reconstruction is described, including the potential use of deep learning. The implementation of advanced functions with limited resources is detailed. Recent systems propose the embedded implementation of 3D reconstruction methods with different granularities. The trade-off between required accuracy and resource consumption for real-time localization and reconstruction is one of the open research questions identified and discussed in this paper
    corecore