7,370 research outputs found

    Voltage-independent SK-channel dysfunction causes neuronal hyperexcitability in the hippocampus of Fmr1 knock-out mice

    Get PDF
    Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (

    Characterization of Fragile X mental retardation antibodies for use in cross-species immunoblotting, immunohistochemistry, and electron microscopy

    Get PDF
    This information is provided on Cogprints for colleagues in the Fragile X field who have requested it directly in the past. It is also a companion work to the article “Human Fragile X gene locus P1 artificial chromosome transgenic mice” from our group (manuscript to be made available on Cogprints)

    Impaired Dendritic Expression and Plasticity Of H-Channels in the fmr1(-/Y) Mouse Model of Fragile X Syndrome

    Get PDF
    Despite extensive research into both synaptic and morphological changes, surprisingly little is known about dendritic function in fragile X syndrome (FXS). We found that the dendritic input resistance of CA1 neurons was significantly lower in fmr1(-/y) versus wild-type mice. Consistent with elevated dendritic I-h, voltage sag, rebound, and resonance frequency were significantly higher and temporal summation was lower in the dendrites of fmr1(-/y) mice. Dendritic expression of the h-channel subunit HCN1, but not HCN2, was higher in the CA1 region of fmr1(-/y) mice. Interestingly, whereas mGluR-mediated persistent decreases in Ih occurred in both wildtype and fmr1(-/y) mice, persistent increases in Ih that occurred after LTP induction in wild-type mice were absent in fmr1(-/y) mice. Thus, chronic upregulation of dendritic Ih in conjunction with impairment of homeostatic h-channel plasticity represents a dendritic channelopathy in this model of mental retardation and may provide a mechanism for the cognitive impairment associated with FXS.FRAXAUniversity of Texas Austin Undergraduate Research FellowshipNational Institutes of Health Grant MH048432Center for Learning and Memor

    Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins

    Fragile X syndrome.

    Get PDF
    Fragile X Syndrome (FXS) is a genetic disease due to a CGG trinucleotide expansion, named full mutation (greater than 200 CGG repeats), in the fragile X mental retardation 1 gene locus Xq27.3; which leads to an hypermethylated region in the gene promoter therefore silencing it and lowering the expression levels of the fragile X mental retardation 1, a protein involved in synaptic plasticity and maturation. Individuals with FXS present with intellectual disability, autism, hyperactivity, long face, large or prominent ears and macroorchidism at puberty and thereafter. Most of the young children with FXS will present with language delay, sensory hyper arousal and anxiety. Girls are less affected than boys, only 25% have intellectual disability. Given the genomic features of the syndrome, there are patients with a number of triplet repeats between 55 and 200, known as premutation carriers. Most carriers have a normal IQ but some have developmental problems. The diagnosis of FXS has evolved from karyotype with special culture medium, to molecular techniques that are more sensitive and specific including PCR and Southern Blot. During the last decade, the advances in the knowledge of FXS, has led to the development of investigations on pharmaceutical management or targeted treatments for FXS. Minocycline and sertraline have shown efficacy in children

    The Role of G-Quadruplex RNA Motif in Fragile X Syndrome

    Get PDF
    Fragile X syndrome (FXS), the most common cause of inherited mental impairment, is caused by the loss of expression of the fragile X mental retardation protein (FMRP). As an RNA binding protein, FMRP has been proposed to regulate the transport and translation of specific message RNA (mRNA). It has been reported that FMRP uses its RGG box domain to bind mRNA targets that form a G-quadruplex structure, structure believed to be important for FMRP recognition of at least a subclass of its mRNA targets. We have hypothesized that the interaction of FMRP with selected relevant mRNA targets occurs in a G-quadruplex dependent manner. By analyzing the structure of two FMRP in vivo mRNA targets, Shank1 mRNA and BASP1 mRNA, and their interactions with FMRP, we showed a high-affinity interaction between Shank1 RNA G-quadruplex and FMRP. The other G-quadruplex forming mRNA BASP1, however, interacts with FMRP using other structural elements
    corecore