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SUMMARY

Despite extensive research into both synaptic and
morphological changes, surprisingly little is known
about dendritic function in fragile X syndrome
(FXS). We found that the dendritic input resistance
of CA1 neurons was significantly lower in fmr1�/y

versus wild-type mice. Consistent with elevated
dendritic Ih, voltage sag, rebound, and resonance
frequency were significantly higher and temporal
summation was lower in the dendrites of fmr1�/y

mice. Dendritic expression of the h-channel subunit
HCN1, but not HCN2, was higher in the CA1 region
of fmr1�/y mice. Interestingly, whereas mGluR-medi-
ated persistent decreases in Ih occurred in both wild-
type and fmr1�/y mice, persistent increases in Ih that
occurred after LTP induction in wild-type mice were
absent in fmr1�/y mice. Thus, chronic upregulation
of dendritic Ih in conjunction with impairment
of homeostatic h-channel plasticity represents a
dendritic channelopathy in this model of mental
retardation and may provide a mechanism for the
cognitive impairment associated with FXS.
INTRODUCTION

Fragile X syndrome (FXS) is the most common form of inherited

mental retardation with a variety of phenotypes including

impaired cognitive ability, problems with working memory,

autistic behavior, and increased incidence of epilepsy. FXS is

characterized by the absence of the RNA-binding protein fragile

X mental retardation protein (FMRP) (Bell et al., 1991). Mice

lacking FMRP, such as the fmr1 knockout (fmr1�/y) mouse,

perform poorly in hippocampal-dependent spatial learning tasks

(Bakker et al., 1994). Interestingly, the performance of fmr1�/y

mice was similar to mice lacking proteins involved in long-term

potentiation (LTP), a proposed cellular correlate of learning

(e.g., Silva et al., 1992).

Several FMRP-target mRNAs are localized in neuronal

dendrites and encode for voltage-gated channels or proteins

involved in the regulation of channel expression and/or function

(Darnell et al., 2011; Bassell and Warren, 2008). Incorrect gene
expression, channel function, and/or loss of posttranslational

channel regulation can have substantial effects on the control

of cellular excitability. The physiological regulation of cellular

excitability and dendritic integration through plasticity of

voltage-gated ion channels is hypothesized to maintain the

input-output characteristics of a neuron within normal limits

(Turrigiano and Nelson, 2000). However, changes in dendritic

channels in neurological disorders or disease can also alter the

input-output relationship and result in a pathophysiological state

(Bernard et al., 2004; Jung et al., 2007). One channel that

undergoes activity-dependent plasticity and is altered in neuro-

logical disease is the h-channel (van Welie et al., 2004; Brager

and Johnston, 2007; Fan et al., 2005; Jung et al., 2007; Shin

et al., 2008).

h-channels are widely distributed in the central nervous

system. In the hippocampus, h-channels are composed

primarily of HCN1 and HCN2 subunits (Santoro et al., 2000). In

CA1 pyramidal neurons the density of h-channels increases

with distance from the soma along the apical dendrite (Magee,

1998). The high density of h-channels in the dendrites allows Ih
(the current mediated by h-channels) to significantly contribute

to the total membrane conductance and thereby exert strong

influence over neuronal function in the subthreshold voltage

range near rest. Subtle modifications in the physiology of

h-channels can produce significant changes in synaptic integra-

tion and neuronal excitability (Santoro et al., 2000; Magee, 1999;

Poolos et al., 2002).

Using whole-cell recording from CA1 pyramidal neuron apical

dendrites, we show that dendritic physiology in the fmr1�/y

mouse is altered in a manner consistent with elevated dendritic

Ih. Differences in hippocampal HCN1 protein expression were

consistent with our physiological results. Interestingly, activity-

dependent increases in Ih following LTP induction were absent

in fmr1�/y mice. Elevated dendritic expression of Ih coupled

with impaired h-channel plasticity might thus indicate some of

the cellular mechanisms underlying the cognitive impairments

associated with FXS.
RESULTS

Dendritic Properties of fmr1�/y Mice Are Significantly
Different from Wild-Type
The intrinsic properties of hippocampal pyramidal neurons, es-

tablished in part by the contribution of dendritic voltage-gated
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ion channels, strongly influence the manner in which synaptic

inputs are combined and propagated from the dendrites to

the soma. In particular a proportion of the total population of

h-channels is active at rest and contributes to the resting

membrane potential (Vm), input resistance (RN), and membrane

time constant (tm) of CA1 neurons (Magee, 1998). We used

somatic and dendritic whole-cell recording to test whether

there were significant differences in the Vm, RN, and tm of

CA1 neurons between fmr1�/y and wild-type (WT) mice. We

found that Vm was significantly more depolarized, RN was

lower, and tm was faster, in the dendrites versus the soma

for both WT and fmr1�/y mice; consistent with a higher density

of h-channels in the apical dendrite. There were no significant

differences between WT and fmr1�/y mice using somatic

recordings (see Figure S1 available online). When we compared

the dendrites between fmr1�/y and WT mice, however, we

found that the dendritic Vm of fmr1�/y mice was significantly

depolarized versus WT (knockout [ko], �61 ± 0.6mV; WT,

�64 ± 0.6mV; p < 0.05). Furthermore, dendritic RN was signif-

icantly lower (Figures 1A–1C) and dendritic tm was significantly

faster (WT, 17 ± 2 ms; ko, 8 ± 1 ms; p < 0.05) in fmr1�/y mice

versus WT.

To test the hypothesis that the differences in dendritic prop-

erties were due to elevated Ih, we took advantage of several

unique characteristics of h-channels and measured electro-

physiological parameters that are sensitive to the amount of

Ih (Brager and Johnston, 2007). Voltage sag (sag) during step

current injections can be due to the relatively slow activation/

deactivation kinetics Ih (Magee, 1998). We found that dendritic

sag from hyperpolarizing current steps was 38% higher in

fmr1�/y mice versus WT (Figures 1D–1F). Rebound amplitude

following a hyperpolarization is due in part to the slow closing

of h-channels. The amount of rebound from a given steady-

state hyperpolarization is increased with larger Ih (Brager and

Johnston, 2007). Dendritic rebound was 43% higher in fmr1�/y

mice versus WT (Figures 1G–1I). The same kinetic properties

that underlie sag and rebound allow Ih to act as a resonator

conductance, and differences in resonance frequency (fR)

reflect differences in Ih (Hutcheon and Yarom, 2000; Narayanan

and Johnston, 2007). Similar to sag and rebound, dendritic fR
was 42% higher in fmr1�/y mice versus WT (Figures 1J–1L). Ih
reduces temporal summation by repolarizing the membrane

during an excitatory postsynaptic potential (EPSP) (Magee,

1998). Consistent with elevated Ih, we found that dendritic

temporal summation was significantly lower in fmr1�/y mice

versus WT (Figures 1M–1O). When measured from the soma,

we found no significant difference in sag, rebound, fR, or

summation between WT and fmr1�/y mice (Figure S1).

As a further test of the contribution of Ih to the differences in

dendritic properties, we compared WT and fmr1�/y dendritic

recordings before and after application of the h-channel blocker

ZD7288. Extracellular application of 20 mM ZD7288 significantly

increased RN in both WT and fmr1�/y dendrites (Figure 1C).

Furthermore, block of Ih significantly decreased sag, rebound,

and fR and increased temporal summation in both WT and

fmr1�/y dendrites (Figures 1F, 1I, 1L, and 1O). After block of Ih
by ZD7288, dendritic properties were no longer significantly

different between WT and fmr1�/y dendrites. These electrophys-
226 Cell Reports 1, 225–233, March 29, 2012 ª2012 The Authors
iological results suggest that dendritic, but not somatic, Ih is

significantly higher in fmr1�/y mice.

Elevated HCN1 Levels in the CA1 Region of the fmr1�/y

Mouse Hippocampus
Our electrophysiological data support the hypothesis that Ih is

higher in the dendrites of CA1 neurons from fmr1�/y mice

versus WT mice. We sought to further test this hypothesis by

examining h-channel proteins using immunohistochemistry

and western blotting. We used antibodies to label the h-

channel subunits HCN1 and HCN2. As expected, the intensity

of HCN1 and HCN2 labeling increased with distance from the

cell body layer indicative of the h-channel gradient. Measuring

the intensity along a line perpendicular to, but not including, the

pyramidal cell body layer in CA1 allows for a comparison of the

distribution of HCN1 and HCN2 staining between slices (Shin

et al., 2008). We found that the intensity of the HCN1 fluores-

cence, but not HCN2, was higher in the distal dendrites of

fmr1�/y mice versus WT mice (Figures 2A–2F). The difference

in HCN1 staining between fmr1�/y and WT mice persisted

when the HCN1 signal was normalized to dendritic marker

MAP2 (Figure S2). We used western blot analysis to determine

if there was higher HCN protein levels in the dendritic field of

the CA1 region of the fmr1�/y mouse versus WT. We found

that HCN1, but not HCN2, protein levels were significantly

higher in homogenates from the dendritic region of CA1 in

fmr1�/y versus WT (Figures 2G and 2H). These results suggest

that the higher dendritic Ih in fmr1�/y mice is due in part to an

increase in the distal dendritic expression of the h-channel

subunit HCN1.

Intrinsic Plasticity Is Impaired in fmr1�/y Mice
Homeostatic mechanisms that maintain neuronal output are

essential for the stabilization of neural networks during classical

Hebbian synaptic plasticity (Turrigiano, 2011). We previously

demonstrated that activation of group I metabotropic glutamate

receptors (mGluRs) results in long-term depression (LTD) and

an accompanying decrease of Ih in CA1 neurons (Brager and

Johnston, 2007). In the hippocampus of fmr1�/y mice, group I

mGluR-dependent LTD is enhanced, whereas NMDA receptor-

dependent LTD is unaffected (Huber et al., 2002). To test

whether mGluR-dependent h-channel plasticity is altered in

fmr1�/y mice, we measured intrinsic properties before and after

activation of group I mGluRs (100 mMDHPG for 10min). Applica-

tion of DHPG to either WT or fmr1�/y CA1 neurons produced

a transient depolarization that recovered by 30 min after wash

(Figure 3A). This transient activation of mGluRs decreased

EPSP slope by 23% in WT and 40% in fmr1�/y mice 30 min after

DHPG application (Figures 3B and 3C). In agreement with our

previous observations in rat hippocampus (Brager and John-

ston, 2007), we found that mGluR activation significantly

increased RN by 85% in WT mice and by 83% in fmr1�/y mice

(Figure 3D). Consistent with a decrease in Ih, fR, rebound, and

sag were significantly decreased after DHPG application in

WT, and fR and rebound were significantly decreased in fmr1�/y

mice (Figures 3E–3G). Based on these results, we conclude

that mGluR-dependent plasticity of Ih occurs in both WT and

fmr1�/y mice.
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Figure 1. h-Channel Dependent Dendritic Properties Are Significantly Different between WT and fmr1�/y Mice

(A) Diagram of recording locations and representative dendritic recordings from WT and fmr1�/y mice.

(B) Group data showing that dendritic RN was significantly lower in fmr1�/y mice (n = 6) versus WT (n = 6).

(C) Group data showing that application of ZD significantly increased RN in both WT (n = 4) and fmr1�/y mice (n = 4).

(D) Representative dendritic whole-cell recordings showing that there was more sag (arrow) in the dendrites of fmr1�/y mice versus WT.

(E) Group data showing that dendritic sag was significantly higher in fmr1�/y mice.

(F) Group data showing that application of ZD significantly decreased sag in both WT and fmr1�/y mice.

(G) Representative dendritic whole-cell recordings (left) and plot used to calculate rebound slope (right) from WT and fmr1�/y mice.

(H) Group data showing that dendritic rebound slope was significantly higher in fmr1�/y mice.

(I) Group data showing that application of ZD significantly decreased rebound in both WT and fmr1�/y mice.

(J) Representative voltage traces and ZAP used to determine fR (dashed line). Note the rightward shift in the fmr1�/y (red) versus the WT (black).

(K) Group data showing that dendritic fR was significantly higher in fmr1�/y mice.

(L) Group data showing that application of ZD significantly decreases fR in both WT and fmr1�/y mice.

(M) Representative traces used to measure temporal summation of fmr1�/y mice versus WT.

(N) Group data showing that dendritic temporal summation was significantly less in fmr1�/y mice.

(O) Group data showing that application of ZD significantly increased dendritic summation in both WT and fmr1�/y mice.

Group data are presented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.005 significantly different from WT. yp < 0.05 significantly different from baseline.
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Figure 2. Distal Dendritic HCN1 Expression in Area CA1 Is Higher in

fmr1�/y Mice

(A) Representative fluorescent images showing HCN1 staining from a WT

(A1) and an fmr1�/y (A2) mouse section (Sub, subiculum; hf, hippocampal
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In CA1 neurons, theta-burst firing of action potentials paired

with EPSPs (theta-burst pairing, TBP) results in an NMDA-

dependent increase in Ih (Fan et al., 2005). To test whether the

higher dendritic Ih in fmr1�/y mice occludes the TBP-dependent

increases in Ih, we induced TBP-LTP in CA1 neurons from both

WT and fmr1�/y mice. CA1 neurons from both WT and fmr1�/y

mice displayed a significant increase in EPSP slope following

TBP (Figures 4A and 4B). In agreement with previous studies

(Fan et al., 2005; Narayanan and Johnston, 2007), TBP was

accompanied by a significant decrease in RN in WT mice

(baseline, 82 ± 7 MU; TBP, 68 ± 6 MU; n = 5, p < 0.05) (Figures

4C and 4D). Interestingly, there was no significant change in

RN in fmr1�/y mice. Consistent with an increase in Ih, TBP sig-

nificantly increased fR, rebound, and sag in WT mice (Figures

4E–4G). In contrast, there was no significant change in fR,

rebound, or sag in fmr1�/y neurons after TBP. We thus conclude

that the activity-dependent expression of Ih plasticity that

normally occurs following TBP-LTP is absent in fmr1�/y mice.

DISCUSSION

Neurons from patients and animal models of FXS show signifi-

cant morphological and synaptic alterations. Here, we show

that a significant change to the intrinsic properties of the

dendrites of CA1 neurons occurs in the fmr1�/y mouse model

of FXS. Electrophysiological data support the hypothesis that

these changes are due in part to a dendritic enhancement of

the hyperpolarization-activated nonselective cationic current,

Ih, in the distal dendrites. Furthermore, this elevation in Ih
appears to be due to increased distal dendritic expression of

the HCN1 subunit. Interestingly, activity-dependent increases

in Ih are absent, whereas activity-dependent decreases in Ih
remain. These data represent the first physiological description

of a channelopathy involving dendritic h-channels associated

with FXS.

Impact on Dendritic Function
Ih plays a complex role in controlling membrane excitability.

What is the impact of elevated Ih in FXS on dendritic function?

Elevated Ih will reduce dendritic excitability by decreasing RN

as well as reducing temporal and spatial summation of

subthreshold EPSPs. Ih also constrains distal dendritic spikes
fissure; DG, dentate gyrus). Fluorescent intensity was measured along the

dashed line.

(B) Representative fluorescent images showing HCN2 staining from a WT (B1)

and an fmr1�/y (B2) mouse section.

(C and D) Region indicated by the box in (A1) and (A2). sp, stratum pyramidale;

sr, stratum radiatum; slm, stratum lacunosum-moleculare.

(E) A plot of intensity as a function of location showing that distal dendritic

HCN1 staining was higher in fmr1�/y mice versus WT mice.

(F) Intensity profile showing that there was no difference in HCN2 staining

between fmr1�/y and WT mice.

(G) The total amount of HCN1 protein in the CA1 region of the fmr1�/y hippo-

campus was significantly higher than WT.

(H) Representative western blot from WT and fmr1�/y mice for HCN2 and

tubulin. There was no significant difference in the total amount of HCN2 protein

between fmr1�/y and WT hippocampus.

Group data are presented as mean ± SEM.**p < 0.01.
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Figure 3. mGluR-Dependent Plasticity Is Present in Both WT and fmr1�/y Mice

(A) Time course of membrane potential change following a 10 min DHPG application.

(B) Representative traces from WT and fmr1�/y mice before and after DHPG application showing LTD of EPSPs and increased RN.

(C) Group data showing the normalized decrease in EPSP slope 30 min after DHPG washout for both WT (n = 4) and fmr1�/y mice (n = 4). Inset shows expanded

time scale of traces in (B).

(D) Group data showing that RN significantly increased after DHPG washout in both WT and fmr1�/y mice.

(E) Group data showing that fR significantly decreased after DHPG washout in both WT and fmr1�/y mice.

(F) Group data showing that rebound slope significantly decreased after DHPG washout in both WT and fmr1�/y mice.

(G) Group data showing that sag significantly decreased after DHPG washout in WT but not fmr1�/y mice.

Group data are presented as mean ± SEM.*p < 0.05; **p < 0.01.
by increasing inactivation of both T- and N-type Ca2+ channels

(Tsay et al., 2007). The normal gradient of h-channels regulates

the propagation of signals between the dendrites and the

soma, and changes in the amount of dendritic Ih will strongly

influence somato-dendritic coupling (Magee, 1998, 1999; Poo-

los et al., 2002). The increase in dendritic Ih in FXS would

decrease somato-dendritic coupling, reducing the likelihood of

synaptic inputs eliciting an action potential at the soma.

Elevated Ih will not only have inhibitory influences on

dendritic excitability but also increase membrane excitability

by depolarizing the membrane potential closer to the threshold

for dendritic spike initiation and by augmenting the depolarizing

rebound potential that occurs following a hyperpolarization. We
found that rebound from hyperpolarization was higher in the

dendrites of fmr1�/y mice. This increase in rebound either alone

(Chen et al., 1999) or in concert with the activation of low-

threshold voltage-dependent calcium channels could elicit

a dendritic spike or dendritic plateau potential (Berger et al.,

2003; Tsay et al., 2007). There is a high density of GABAergic

synapses and GABAB receptors in the distal dendrites of CA1

neurons (Otmakhova and Lisman, 2004). It is, therefore,

possible that in fmr1�/y mice the normal inhibitory input into

the distal dendrites of CA1 neurons will in fact result in signifi-

cant dendritic excitation.

These two opposing actions of elevated Ih on cellular excit-

ability will have the complicated impact of decreasing RN,
Cell Reports 1, 225–233, March 29, 2012 ª2012 The Authors 229
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Figure 4. TBP-Dependent Ih Plasticity Is Absent in fmr1�/y Mice

(A) Representative traces (from time points indicated by a and b in B) from WT (black) and fmr1�/y (red) mice before and after TBP showing LTP of EPSPs and

decreased RN.

(B) The time course of EPSP slope change after TBP for WT (n = 6) and fmr1�/y mice (n = 4).

(C) The time course of RN change after TBP for WT (n = 6) and fmr1�/y mice (n = 4).

(D) Group data showing that RN significantly decreased after TBP in WT but not fmr1�/y mice.

(E) Group data showing that fR significantly increased after TBP in WT but not fmr1�/y mice.

(F) Group data showing that rebound slope significantly increased after TBP in WT but not fmr1�/y mice.

(G) Group data showing that sag significantly increased after TBP in WT but not fmr1�/y mice.

Group data are presented as mean ± SEM.*p < 0.05; **p < 0.01; ***p < 0.005.
temporal and spatial summation, and somato-dendritic

coupling, making it harder for synaptic inputs to summate and

elicit a somatic action potential, whereas also increasing the like-

lihood of local dendritic regenerative events. The exact impact of

elevated dendritic Ih on information processing in FXS requires

further investigation.

Ih Plasticity in FXS
Transient and persistent changes in Ih, which alters neuronal

intrinsic excitability, occur during and after induction of synaptic

plasticity (Brager and Johnston, 2007; Fan et al., 2005). This

coordinated change in synaptic and intrinsic excitability is not

completely understood, but one current hypothesis is that

intrinsic plasticity can alleviate the inherent instability of synaptic

plasticity. Following induction of LTP there is a persistent
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increase in Ih throughout the dendrites of CA1 neurons (Fan

et al., 2005; Narayanan and Johnston, 2007). We found that

although TBP-dependent LTP was not different between WT

and fmr1�/ymice, Ih plasticity was absent in the latter. One possi-

bility is that changes in the intracellular signaling molecules

occlude any increase in Ih after TBP-LTP. For example, CAMKII

levels are elevated in fmr1�/y mice (Zalfa et al., 2003), and the

activation of CAMKII is required for TBP-dependent Ih plasticity

(Fan et al., 2005). It is possible that the already higher levels of

CAMKII lead to elevated dendritic Ih and that TBP-LTP is unable

to further increase in Ih in fmr1�/y mice. The concomitant

increase in Ih that normally occurs with LTP is believed to be

one mechanism by which homeostatic regulation of neural

network stability can be achieved (Narayanan and Johnston,

2007). Our results suggest that despite the appearance of normal



synaptic potentiation, the deficit in intrinsic plasticity may lead to

inherent network destabilization. The combined plasticity of Ih
and synaptic strength results in preferential tuning of the

dendrites to selected synaptic inputs. This form of homeostatic

plasticity is believed to be critical for information storage and

processing by neuronal networks (Turrigiano and Nelson,

2000). A loss of normal h-channel plasticity, with or without

accompanying deficits in synaptic plasticity, could have

profound effects on neuronal signal processing.

Potential Mechanisms
How does the absence of FMRP lead to an increase in dendritic

Ih and HCN1 protein? FMRP may bind to and regulate the

translation of HCN1 mRNA. Classically, FMRP acts as a transla-

tional repressor (but see Gross et al., 2011). If HCN1 mRNA is

a target of FMRP, then the loss of FMRP will directly result in

elevated HCN1 expression. Indeed, our data show that expres-

sion of HCN1 protein is higher in the CA1 region of the fmr1�/y

mouse hippocampus. FMRP may also interact directly with ion

channel proteins. In the olfactory bulb and brain stem, FMRP

can bind to and regulate the gating of the sodium-activated

potassium channel, Slack (Brown et al., 2010). FMRP may

bind directly to h-channel proteins or regulate the binding

between HCN subunits and auxiliary proteins such as tetratri-

copeptide repeat-containing Rab8b-interacting protein

(TRIP8b) (Santoro et al., 2004). The interaction between TRIP8b

and HCN subunits regulates both the gating and surface

expression of h-channels.

The elevated Ihmay also be a compensatory change due to the

loss of FMRP-dependent regulation of another protein. FMRP is

necessary for normal synapse elimination during development

(Pfeiffer and Huber, 2007). One possibility is that excessive

synaptic excitation may lead to a homeostatic increase in Ih.

Upregulation of hippocampal h-channels can occur following

high levels of AMPA receptor activation (van Welie et al., 2004).

Increased excitatory input from CA3 Schaeffer collaterals due

to elevated neurotransmitter release (Deng et al., 2011) could

lead to excess CA1 AMPA receptor activation in fmr1�/y mice.

Additionally, synaptic inputs from layer III of the entorhinal cortex

(EC) onto the distal dendrites of CA1 neurons regulate the normal

h-channel gradient (Shin and Chetkovich, 2007). Increased

excitatory input from the EC, due to improper synaptic pruning,

could lead to a compensatory increase in Ih. Alternatively,

elevated Ih may be in response to loss of another ion channel.

Invertebrate studies suggest that there may be homeostatic

coregulation of Ih and IA including functional reciprocity (Harris-

Warrick et al., 1995). There are conflicting reports about Kv4.2

expression, the putative subunit of IA, in the fmr1�/y hippo-

campus. One study reported that FMRP promotes translation

of Kv4.2 mRNA and that Kv4.2 protein levels are reduced in

fmr1�/y mice (Gross et al., 2011). More recently, a second study

reported that FMRP acts as a translational repressor and that

Kv4.2 expression is higher in the fmr1�/y hippocampus

compared to WT (Lee et al., 2011). It is possible that changes

in Kv4.2 expression results in a compensatory increase in Ih, in

part by increased HCN1 expression. We are currently investi-

gating these hypotheses as potential mechanisms underlying

the change in dendritic function in FXS.
In summary we found that the dendrites of CA1 neurons from

fmr1�/y mice have altered intrinsic properties consistent with an

elevation of Ih. This elevation is due in part to the increased distal

dendritic expression of the h-channel subunit HCN1. Further-

more, this elevation in dendritic Ih appears to occlude normal

homeostatic intrinsic plasticity of Ih that occurs during LTP.

These results suggest that altered dendritic processing and

the potential for network instability may underlie some of the

neurological deficits associated with FXS.

EXPERIMENTAL PROCEDURES

Acute Hippocampal Slices and Electrophysiology

All experiments were conducted in accordance with the University’s IACUC.

Hippocampal slices (300 mm) were prepared from 2- to 3-month-old male

WT and fmr1�/y mice (C57BL/6) as described previously (Fan et al., 2005)

(see Extended Experimental Procedures). Slices were placed in a holding

chamber filled with ACSF containing (125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25

NaHCO3, 2 CaCl2, 2 MgCl2, and 12.5 dextrose, bubbled continuously with

95% O2/5% CO2) warmed to 35�C for 30 min and then kept at RT. Hippo-

campal slices were placed into a submerged recording chamber and perfused

with ACSF (as above except 3.0 KCl and 1.0 MgCl2) at 31
�C–33�C and viewed

with a Zeiss Axioskop. For physiological measurements (Figure 1), 10 mM

DNQX, 50 mM AP5, 2 mM SR95531, and 5 mM CGP52432 were present

throughout. For mGluRs experiments (Figure 3), AP5 and 10 mM MK-801

were included in the ACSF (Brager and Johnston, 2007). For LTP experiments

(Figure 4), GABAA- and GABAB-mediated IPSPs were blocked by SR95531

and CGP55845, and area CA3 was removed. All drugs were made from stock

solutions in water or DMSO (final concentration of DMSO%0.1%). Drugs were

obtained from Ascent Scientific (Bristol, UK).

Pipettes (4–6 MU) were pulled from borosilicate glass and filled with solution

containing 120 mM K-gluconate, 20 mM KCl, 10 mM HEPES, 4 mM NaCl,

4 mM MgATP, 0.3 mM Na-GTP, and 7 mM K2-phosphocreatine (pH 7.3).

Series resistance (RS) was monitored throughout the recording, and experi-

ments with RS >30 MU were discarded. EPSPs of 4–6mV were elicited using

tungsten-stimulating electrodes placed <20 mm from the apical dendrite

�100–150 mm from the soma. Action potentials were elicited by current injec-

tion into the soma (1–2 nA for 2 ms).

Data were sampled at 20 kHz, filtered at 3 kHz, and digitized by an ITC-18

interface. EPSPs were quantified by linear fit to the initial slope. H-sensitive

parameters weremeasured and analyzed as described in the Extended Exper-

imental Procedures.

Immunohistochemistry

Two to 3-month-old male fmr1�/y and WT mice were anesthetized and perfu-

sion fixed 4% paraformaldehyde (PFA) at 4�C. The brain was removed, post-

fixed in PFA for 2 hr at RT, and placed in 30% sucrose in PBS overnight at 4�C.
A total of 50 mm near-horizontal thin sections containing the hippocampus

were cut on a freezing microtome. Slices were washed and then incubated

in a blocking buffer solution containing 5% Normal Goat Serum, 0.1% Triton

X-100, and PBS (PBS-T), and then incubated in primary antibody (1:2,000

concentration in PBS-T) against either HCN1 or HCN2 overnight at 4�C.
Sections were then washed with PBS then placed in PBS-T containing

a secondary antibody overnight at 4�C. The slices were then washed in PBS

and mounted onmicroscope slides. The sections were visualized on a fluores-

cent microscope; images were captured by CCD camera, and analyzed using

ImageJ (National Institutes of Health). The intensity of staining was quantified

by measuring the pixel intensity along a line perpendicular to the cell body axis

in CA1 (Shin et al., 2008).

Western Blotting

Area CA1 was isolated from three to five individual hippocampal slices frozen

on dry ice. Tissue was homogenized in lysis buffer containing protease

inhibitors. Homogenates were centrifuged at 803 g for 10 min, resolved using

SDS-PAGE, and transferred to nitrocellulose membranes. Membranes were
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blocked in blocking buffer (LI-COR) overnight at 4�C or for 1 hr at RT.

Membranes were incubated for 2 hr at RT or overnight at 4�C in primary

antibodies diluted in blocking buffer (gp a-HCN1, 1:2,000; gp a-HCN2,

1:2,000; mouse a-tubulin 1:20,000). Membranes were washed in PBS plus

0.05% Tween 20 (PBS+) and then incubated in species-appropriate

secondary in PBS+ for 45 min at RT. Membranes were then washed in

PBS+ followed by PBS and visualized on an Odyssey imaging system

(LI-COR). Blots were analyzed using ImageJ. HCN protein levels were normal-

ized to tubulin levels as a control for protein loading. Homogenates from four

fmr1�/y and four WT mice were used for four separate western blots.
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