14,699 research outputs found

    Very low sensitivity FIR filter implementation using 'structural passivity' concept

    Get PDF
    The concept of "structurally bounded" or "structurally passive" FIR filter implementation is introduced, as a means of achieving very low passband sensitivities. The resulting filter structures, called FIRBR structures, can easily be transformed into very low-sensitivity "passive" two-dimensional FIR filter structures. From a layout point of view, the new structures are not any more complicated than the well-known cascade form. The FIRBR structures do not depend, for synthesis, upon continuous-time filter circuits

    Efficient implementation of 90 degrees phase shifter in FPGA

    Get PDF
    In this article, we present an efficient way of implementing 90 phase shifter using Hilbert transformer with canonic signed digit (CSD) coefficients in FPGA. It is implemented using 27-tap symmetric finite impulse response (FIR) filter. Representing the filter coefficients by CSD eliminates the need for multipliers and the filter is implemented using shifters and adders/subtractors. The simulated results for the frequency response of the Hilbert transformer with infinite precision coefficients and CSD coefficients agree with each other. The proposed architecture requires less hardware as one adder is saved for the realization of every negative coefficient compared to convectional CSD FIR filter implementation. Also, it offers a high accuracy of phase shift

    Towards Optimised FPGA Realisation of Microprogrammed Control Unit Based FIR Filters

    Get PDF
    Finite impulse response (FIR) filter is one of the most common type of digital filter used in digital signal processing (DSP) applications. An FIR filter is usually realised in hardware using multipliers, adders and registers. Field programmable gate arrays (FPGAs) have been widely explored for the hardware realisation of FIR filters using different algorithms and techniques. One such technique that has recently gained considerable attention is the use of microprogrammed control unit (MPCU) in designing FIR filters. In this chapter, we further explore MPCU technique for optimised hardware realisation of digital FIR filter. To evaluate the performance, two different architectures of FIR filter are designed using Wallace tree multiplier. Both the architectures are coded in Verilog hardware description language (HDL). The performance is analysed by evaluating the resource utilisation and timing reports of Virtex-5 FPGA generated by the Synopsys Synplify Pro tool. Based on the implementation results, as compared to conventional design, Wallace tree multiplier using carry skip adder (CSKA) provides optimal digital FIR filter

    PERFORMANCE EVALUATION OF BOOTH AND WALLACE MULTIPLIER USING FIR FILTER

    Get PDF
    An area-and speed efficient multipliers is proposed in the thesis. the proposed booth and Wallace multipliers shows the tradeoff in the performance evaluation for the fir filter applications. For implementation of fir filter in this paper the adders introduced are carry save adder and carry skip adder. For evaluating the fir filter performance the tested combinations are booth carry save , booth carry skip , Wallace carry save , Wallace carry skip

    On prefilters for digital FIR filter design

    Get PDF
    A new family of digital prefilter structures is introduced, based on the Dolph-Chebyshev function. These prefilters can be combined with appropriately designed "equalizer" filters based on equiripple methods, leading to efficient FIR digital filter designs. Design examples are included, demonstrating the simplicity of the resulting designs, as compared to conventional equiripple designs

    DESIGN OF HIGH PERFORMANCE MULTIPLIERLESS LINEAR PHASE FINITE IMPULSE RESPONSE FILTERS

    Get PDF
    This research work proposes the finite impulse response (FIR) filters design using distributed arithmetic architecture optimized for field programmable gate array. To implement computationally efficient, low power, high-speed FIR filter a two-dimensional fully pipelined structure is used. The FIR filter is dynamically reconfigured to realize low pass and high pass filter by changing the filter coefficients. The FIR filter is most fundamental components in digital signal processing for high-speed application. The aim of this research work is to design multiplier-less FIR filter for the requirements of low power and high speed various embedded applications.Â
    • …
    corecore