1,811 research outputs found

    Lunar Dust Effects on Spacesuit Systems: Insights from the Apollo Spacesuits

    Get PDF
    Systems and components of selected Apollo A7L/A7LB flight-article spacesuits that were worn on the lunar surface have been studied to determine the degree to which they suffered contamination, abrasion and wear or loss of function due to effects from lunar soil particles. Filter materials from the lithium hydroxide (LiOH) canisters from the Apollo Command Module were also studied to determine the amount and type of any lunar dust particles they may have captured from the spacecraft atmosphere. The specific spacesuit study materials include the outermost soft fabric layers on Apollo 12 and 17 integrated thermal micrometeorite garment assemblies and outermost fabrics on Apollo 17 extravehicular pressure gloves. In addition, the degree of surface wear in the sealed wrist rotation bearing from Apollo 16 extravehicular and intravehicular pressure gloves was evaluated and compared. Scanning electron microscope examination of the Apollo 12 T-164 woven TeflonO fabric confirms the presence of lunar soil particles and the ability of these particles to cause separation and fraying of the Teflon fibers. Optical imaging, chemical analysis and particle sampling applied to the outer fabric of the Apollo 17 spacesuit has identified Ti as a potentially useful chemical marker for comparing the amount of lunar soil retained on different areas of the spacesuit outer fabric. High-yield particle sampling from the Apollo 17 fabric surfaces using adhesive tape found 80% of particles on the fabric are lunar soil particles averaging 10.5 m in diameter, with the rest being intrinsic fabric materials or environmental contaminants. Analysis of the mineralogical composition of the lunar particles found that on a grain-count basis the particle population is dominated by plagioclase feldspar and various types of glassy particles derived mostly from soil agglutinates, with a subordinate amount of pyroxene. On a grain size basis, however, the pyroxene grains are generally a factor of 2 larger than glass and plagioclase, so conversion of the data to a modal (volume %) basis results in pyroxene becoming the modally dominant particle type with glass and plagioclase significantly less abundant. When comparisons are made to the modal composition of lunar soil at the Apollo 17 landing site, the results suggest that pyroxene particles have overall better retention on the spacesuit outer fabric compared to plagioclase and especially glass. Scanning electron microscopy revealed no measureable difference in the amount of wear and abrasion in the wrist rotation bearing of an Apollo 16 pressure glove worn only in the spacecraft and one worn only for extravehicular activity on the lunar surface. The results suggest either that the bearing prevented entry of lunar dust, or that dust was not sufficiently abrasive to damage the bearing, or both

    Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshal Space Flight Center

    Get PDF
    The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks

    FK Comae Berenices, King of Spin: The COCOA-PUFS Project

    Get PDF
    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV (120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph, but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of time scales, over all wavelengths, during the week-long main campaign, including a large X-ray flare; "super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV 139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm (10,000-30,000 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences, and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution.Comment: to be published in ApJ

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Radial Velocity Prospects Current and Future: A White Paper Report prepared by the Study Analysis Group 8 for the Exoplanet Program Analysis Group (ExoPAG)

    Full text link
    [Abridged] The Study Analysis Group 8 of the NASA Exoplanet Analysis Group was convened to assess the current capabilities and the future potential of the precise radial velocity (PRV) method to advance the NASA goal to "search for planetary bodies and Earth-like planets in orbit around other stars.: (U.S. National Space Policy, June 28, 2010). PRVs complement other exoplanet detection methods, for example offering a direct path to obtaining the bulk density and thus the structure and composition of transiting exoplanets. Our analysis builds upon previous community input, including the ExoPlanet Community Report chapter on radial velocities in 2008, the 2010 Decadal Survey of Astronomy, the Penn State Precise Radial Velocities Workshop response to the Decadal Survey in 2010, and the NSF Portfolio Review in 2012. The radial-velocity detection of exoplanets is strongly endorsed by both the Astro 2010 Decadal Survey "New Worlds, New Horizons" and the NSF Portfolio Review, and the community has recommended robust investment in PRVs. The demands on telescope time for the above mission support, especially for systems of small planets, will exceed the number of nights available using instruments now in operation by a factor of at least several for TESS alone. Pushing down towards true Earth twins will require more photons (i.e. larger telescopes), more stable spectrographs than are currently available, better calibration, and better correction for stellar jitter. We outline four hypothetical situations for PRV work necessary to meet NASA mission exoplanet science objectives.Comment: ExoPAG SAG 8 final report, 112 pages, fixed author name onl

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster

    Integrated Research Plan to Assess the Combined Effects of Space Radiation, Altered Gravity, and Isolation and Confinement on Crew Health and Performance: Problem Statement

    Get PDF
    Future crewed exploration missions to Mars could last up to three years and will expose astronauts to unprecedented environmental challenges. Challenges to the nervous system during these missions will include factors of: space radiation that can damage sensitive neurons in the central nervous system (CNS); isolation and confinement can affect cognition and behavior; and altered gravity that will change the astronauts perception of their environment and their spatial orientation, and will affect their coordination, balance, and locomotion. In the past, effects of spaceflight stressors have been characterized individually. However, long-term, simultaneous exposure to multiple stressors will produce a range of interrelated behavioral and biological effects that have the potential to adversely affect operationally relevant crew performance. These complex environmental challenges might interact synergistically and increase the overall risk to the health and performance of the astronaut. Therefore, NASAs Human Research Program (HRP) has directed an integrated approach to characterize and mitigate the risk to the CNS from simultaneous exposure to these multiple spaceflight factors. The proposed research strategy focuses on systematically evaluating the relationships among three existing research risks associated with spaceflight: Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation (CNS), Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders (BMed), and Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight (SM). NASAs HRP approach is intended to identify the magnitude and types of interactions as they affect behavior, especially as it relates to operationally relevant performance (e.g., performance that depends on reaction time, procedural memory, etc.). In order to appropriately characterize this risk of multiple spaceflight environmental stressors, there is a recognition of the need to leverage research approaches using appropriate animal models and behavioral constructs. Very little has been documented on the combined effects of altered gravity, space radiation, and other psychological and cognitive stressors on the CNS. Preliminary evidence from rodents suggest that a combination of a minimum of exposures to even two of three stressors of: simulated space radiation, simulated microgravity, and simulated isolation and confinement, have produced different and more pronounced biological and performance effects than exposure to these same stressors individually. Structural and functional changes to the CNS of rodents exposed to transdisciplinary combined stressors indicate that important processes related to information processing are likely altered including impairment of exploratory and risk taking behaviors, as well as executive function including learning, memory, and cognitive flexibility all of which may be linked to changes in related operational relevant performance. The fully integrated research plan outlines approaches to evaluate how combined, potentially synergistic, impacts of simultaneous exposures to spaceflight hazards will affect an astronauts CNS and their operationally relevant performance during future exploration missions, including missions to the Moon and Mars. The ultimate goals are to derive risk estimates for the combined, potentially synergistic, effects of the three major spaceflight hazards that will establish acceptable maximum decrement or change in a physiological or behavioral parameters during or after spaceflight, the acceptable limit of exposure to a spaceflight factor, and to evaluate strategies to mitigate any associated decrements in operationally relevant performance

    Thermal analysis of wood-steel hybrid construction

    Get PDF
    Main goal of this work is to present a numerical model to study the thermal necrosis due a dental drilling process, with and without water irrigation. Also an experimental methodology is used to measure the thermal occurrence in a pig mandible. Motivation, the assessment of bone damage, using the temperature criterion (above 55ºC
    corecore