25 research outputs found

    SAR calculation using FDTD simulations

    Get PDF
    The main intend of this work, is to determinate the Specific Absorption Rate (SAR) on human head tissues exposed to radiation caused by sources of 900 and 1800MHz, since those are the typical frequencies for mobile communications systems nowadays. In order to determinate the SAR, has been used the FDTD (Finite Difference Time Domain), which is a numeric method in time domain, obtained from the Maxwell equations in differential mode. In order to do this, a computational model from the human head in two dimensions made with cells of the smallest possible size was implemented, respecting the limits from computational processing. It was possible to verify the very good efficiency of the FDTD method in the resolution of those types of problems

    Effects of Electromagnetic Fields on Mammalian Cells

    Get PDF
    The characteristics of mammalian cells can be influenced by electromagnetic fields (EMFs). The electromagnetic fields have a number of physiological effects on cells and tissues such as alteration of gene expression, cells viability, proliferation, apoptosis, number of mammospheres, cells cycle phase, and invasion. The existing literature proves that the impact of EMFs on mammalian cells depends on the density and uniformity of the field, frequency range, exposure time, cell types, culture environment, and culcuremedium. This paper presents a review of the impacts of EMFs on mammalian cells in vitro culture. In this article, we reviewed the contemporary understanding of the various form of electromagnetic radiation effect on cultured mammalian cells in vitro, EMF exposing systems, and internal field mechanism in the cells.DOI:http://dx.doi.org/10.11591/ijece.v2i2.26

    Thrust Area Report, Engineering Research, Development and Technology

    Full text link

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a 'snapshot' introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    The perceptual flow of phonetic feature processing

    Get PDF

    Across frequency processes involved in auditory detection of coloration

    Get PDF
    corecore