23 research outputs found

    FDD Massive MIMO via UL/DL Channel Covariance Extrapolation and Active Channel Sparsification

    Get PDF
    We propose a novel method for massive multiple-input multiple-output (massive MIMO) in frequency division duplexing (FDD) systems. Due to the large frequency separation between uplink (UL) and downlink (DL) in FDD systems, channel reciprocity does not hold. Hence, in order to provide DL channel state information to the base station (BS), closed-loop DL channel probing, and channel state information (CSI) feedback is needed. In massive MIMO, this typically incurs a large training overhead. For example, in a typical configuration with M ≃200 BS antennas and fading coherence block of T ≃ 200 symbols, the resulting rate penalty factor due to the DL training overhead, given by max{0, 1 - M/T }, is close to 0. To reduce this overhead, we build upon the well-known fact that the angular scattering function of the user channels is invariant over frequency intervals whose size is small with respect to the carrier frequency (as in current FDD cellular standards). This allows us to estimate the users' DL channel covariance matrix from UL pilots without additional overhead. Based on this covariance information, we propose a novel sparsifying precoder in order to maximize the rank of the effective sparsified channel matrix subject to the condition that each effective user channel has sparsity not larger than some desired DL pilot dimension T dl , resulting in the DL training overhead factor max{0, 1 - T dl /T } and CSI feedback cost of Tdl pilot measurements. The optimization of the sparsifying precoder is formulated as a mixed integer linear program, that can be efficiently solved. Extensive simulation results demonstrate the superiority of the proposed approach with respect to the concurrent state-of-the-art schemes based on compressed sensing or UL/DL dictionary learning

    FDD Massive MIMO via UL/DL Channel Covariance Extrapolation and Active Channel Sparsification

    Get PDF
    We propose a novel method for massive multiple-input multiple-output (massive MIMO) in frequency division duplexing (FDD) systems. Due to the large frequency separation between uplink (UL) and downlink (DL) in FDD systems, channel reciprocity does not hold. Hence, in order to provide DL channel state information to the base station (BS), closed-loop DL channel probing, and channel state information (CSI) feedback is needed. In massive MIMO, this typically incurs a large training overhead. For example, in a typical configuration with M ≃200 BS antennas and fading coherence block of T ≃ 200 symbols, the resulting rate penalty factor due to the DL training overhead, given by max{0, 1 - M/T }, is close to 0. To reduce this overhead, we build upon the well-known fact that the angular scattering function of the user channels is invariant over frequency intervals whose size is small with respect to the carrier frequency (as in current FDD cellular standards). This allows us to estimate the users' DL channel covariance matrix from UL pilots without additional overhead. Based on this covariance information, we propose a novel sparsifying precoder in order to maximize the rank of the effective sparsified channel matrix subject to the condition that each effective user channel has sparsity not larger than some desired DL pilot dimension T dl , resulting in the DL training overhead factor max{0, 1 - T dl /T } and CSI feedback cost of Tdl pilot measurements. The optimization of the sparsifying precoder is formulated as a mixed integer linear program, that can be efficiently solved. Extensive simulation results demonstrate the superiority of the proposed approach with respect to the concurrent state-of-the-art schemes based on compressed sensing or UL/DL dictionary learning

    Robust Non-Coherent Beamforming for FDD Downlink Massive MIMO

    Full text link
    Designing beamforming techniques for the downlink (DL) of frequency division duplex (FDD) massive MIMO is known to be a challenging problem due to the difficulty of obtaining channel state information (CSI). Indeed, since the uplink-downlink bands are disjoint, the system cannot rely on channel reciprocity to estimate the channel from uplink (UL) pilots as in time division duplexing (TDD) system. Still, in this paper, we propose original designs for robust beamformers that do not require any feedback from the users and only rely on the transmission of UL pilots. The price to pay is that the beamformer is non-coherent in the sense that it does not leverage full knowledge of the phase of each multipath component. A large variety of novel designs are proposed under different criterion and partial phase knowledge

    Performance Analysis of Channel Extrapolation in FDD Massive MIMO Systems

    Full text link
    Channel estimation for the downlink of frequency division duplex (FDD) massive MIMO systems is well known to generate a large overhead as the amount of training generally scales with the number of transmit antennas in a MIMO system. In this paper, we consider the solution of extrapolating the channel frequency response from uplink pilot estimates to the downlink frequency band, which completely removes the training overhead. We first show that conventional estimators fail to achieve reasonable accuracy. We propose instead to use high-resolution channel estimation. We derive theoretical lower bounds (LB) for the mean squared error (MSE) of the extrapolated channel. Assuming that the paths are well separated, the LB is simplified in an expression that gives considerable physical insight. It is then shown that the MSE is inversely proportional to the number of receive antennas while the extrapolation performance penalty scales with the square of the ratio of the frequency offset and the training bandwidth. The channel extrapolation performance is validated through numeric simulations and experimental measurements taken in an anechoic chamber. Our main conclusion is that channel extrapolation is a viable solution for FDD massive MIMO systems if accurate system calibration is performed and favorable propagation conditions are present.Comment: arXiv admin note: substantial text overlap with arXiv:1902.0684

    Spectral Efficiency and Energy Efficiency Tradeoff in Massive MIMO Downlink Transmission with Statistical CSIT

    Full text link
    As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.Comment: Typos corrected. 14 pages, 7 figures. Accepted for publication on IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:2002.0488
    corecore