5,036 research outputs found

    Understanding Galaxy Formation and Evolution

    Get PDF
    The old dream of integrating into one the study of micro and macrocosmos is now a reality. Cosmology, astrophysics, and particle physics intersect in a scenario (but still not a theory) of cosmic structure formation and evolution called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to explain the origin of galaxies. In these lecture notes, I first present a review of the main galaxy properties, highlighting the questions that any theory of galaxy formation should explain. Then, the cosmological framework and the main aspects of primordial perturbation generation and evolution are pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation, presenting a review on LCDM halo assembling and properties, and on the main candidates for non-baryonic dark matter. It is shown how the nature of elemental particles can influence on the features of galaxies and their systems. Finally, the complex processes of baryon dissipation inside the non-linearly evolving CDM halos, formation of disks and spheroids, and transformation of gas into stars are briefly described, remarking on the possibility of a few driving factors and parameters able to explain the main body of galaxy properties. A summary and a discussion of some of the issues and open problems of the LCDM paradigm are given in the final part of these notes.Comment: 50 pages, 10 low-resolution figures (for normal-resolution, DOWNLOAD THE PAPER (PDF, 1.9 Mb) FROM http://www.astroscu.unam.mx/~avila/avila.pdf). Lectures given at the IV Mexican School of Astrophysics, July 18-25, 2005 (submitted to the Editors on March 15, 2006

    Dark matter concentrations in galactic nuclei according to polytropic models

    Get PDF
    We calculate the radial profiles of galaxies where the nuclear region is self-gravitating, consisting of self-interacting dark matter (SIDM) with FF degrees of freedom. For sufficiently high density this dark matter becomes collisional, regardless of its behaviour on galaxy scales. Our calculations show a spike in the central density profile, with properties determined by the dark matter microphysics, and the densities can reach the `mean density' of a black hole (from dividing the black-hole mass by the volume enclosed by the Schwarzschild radius). For a galaxy halo of given compactness (χ=2GM/Rc2\chi=2GM/Rc^2), certain values for the dark matter entropy yield a dense central object lacking an event horizon. For some soft equations of state of the SIDM (e.g. F≥6F\ge6), there are multiple horizonless solutions at given compactness. Although light propagates around and through a sphere composed of dark matter, it is gravitationally lensed and redshifted. While some calculations give non-singular solutions, others yield solutions with a central singularity. In all cases the density transitions smoothly from the central body to the dark-matter envelope around it, and to the galaxy's dark matter halo. We propose that pulsar timing observations will be able to distinguish between systems with a centrally dense dark matter sphere (for different equations of state) and conventional galactic nuclei that harbour a supermassive black hole.Comment: MNRAS accepted, 24 pages, 12 figure

    A new gravitational N-body simulation algorithm for investigation of cosmological chaotic advection

    Full text link
    Recently alternative approaches in cosmology seeks to explain the nature of dark matter as a direct result of the non-linear spacetime curvature due to different types of deformation potentials. In this context, a key test for this hypothesis is to examine the effects of deformation on the evolution of large scales structures. An important requirement for the fine analysis of this pure gravitational signature (without dark matter elements) is to characterize the position of a galaxy during its trajectory to the gravitational collapse of super clusters at low redshifts. In this context, each element in an gravitational N-body simulation behaves as a tracer of collapse governed by the process known as chaotic advection (or lagrangian turbulence). In order to develop a detailed study of this new approach we develop the COsmic LAgrangian TUrbulence Simulator (COLATUS) to perform gravitational N-body simulations based on Compute Unified Device Architecture (CUDA) for graphics processing units (GPUs). In this paper we report the first robust results obtained from COLATUS.Comment: Proceedings of Sixth International School on Field Theory and Gravitation-2012 - by American Institute of Physic

    Do micro brown dwarf detections explain the galactic dark matter?

    Full text link
    Context: The baryonic dark matter dominating the structures of galaxies is widely considered as mysterious, but hints for it have been in fact detected in several astronomical observations at optical, infrared, and radio wavelengths. We call attention to the nature of galaxy merging, the observed rapid microlensing of a quasar, the detection of "cometary knots" in planetary nebulae, and the Lyman-alpha clouds as optical phenomena revealing the compact objects. Radio observations of "extreme scattering events" and "parabolic arcs" and microwave observations of "cold dust cirrus" clouds are observed at 15 - 20 K temperatures are till now not considered in a unifying picture. Aims: The theory of gravitational hydrodynamics predicts galactic dark matter arises from Jeans clusters that are made up of almost a trillion micro brown dwarfs (mBDs) of earth weight. It is intended to explain the aforementioned anomalous observations and to make predictions within this framework. Methods: We employ analytical isothermal modeling to estimate various effects. Results: Estimates of their total number show that they comprise enough mass to constitute the missing baryonic matter. Mysterious radio events are explained by mBD pair merging in the Galaxy. The "dust" temperature of cold galaxy halos arises from a thermostat setting due to a slow release of latent heat at the 14 K gas to solid transition at the mBD surface. The proportionality of the central black hole mass of a galaxy and its number of globular clusters is explained. The visibility of an early galaxy at redshift 8.6 is obvious with most hydrogen locked up in mBDs. Conclusions: Numerical simulations of various steps would further test the approach. It looks promising to redo MACHO searches against the Magellanic clouds.Comment: 12 pages A&A tex, 3 pdf figure

    Constrained simulations of the Local Group: on the radial distribution of substructures

    Full text link
    We examine the properties of satellites found in high resolution simulations of the local group. We use constrained simulations designed to reproduce the main dynamical features that characterize the local neighborhood, i.e. within tens of Mpc around the Local Group (LG). Specifically, a LG-like object is found located within the 'correct' dynamical environment and consisting of three main objects which are associated with the Milky Way, M31 and M33. By running two simulations of this LG from identical initial conditions - one with and one without baryons modeled hydrodynamically - we can quantify the effect of gas physics on the z=0z=0 population of subhaloes in an environment similar to our own. We find that above a certain mass cut, Msub>2×108h−1M⊙M_{\rm sub} > 2\times10^{8}h^{-1} M_{\odot} subhaloes in hydrodynamic simulations are more radially concentrated than those in simulations with out gas. This is caused by the collapse of baryons into stars that typically sit in the central regions of subhaloes, making them denser. The increased central density of such a subhalo, results in less mass loss due to tidal stripping than the same subhalo simulated with only dark matter. The increased mass in hydrodynamic subhaloes with respect to dark matter ones, causes dynamical friction to be more effective, dragging the subhalo towards the centre of the host. This results in these subhaloes being effectively more radially concentrated then their dark matter counterparts.Comment: 12 pages, 9 figure

    Cold Dark Matter Substructure and Galactic Disks I: Morphological Signatures of Hierarchical Satellite Accretion

    Get PDF
    (Abridged) We conduct a series of high-resolution, dissipationless N-body simulations to investigate the cumulative effect of substructure mergers onto thin disk galaxies in the context of the LCDM paradigm of structure formation. Our simulation campaign is based on a hybrid approach. Substructure properties are culled directly from cosmological simulations of galaxy-sized cold dark matter (CDM) halos. In contrast to what can be inferred from statistics of the present-day substructure populations, accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z~1 should be common occurrences. One host halo merger history is subsequently used to seed controlled numerical experiments of repeated satellite impacts on an initially-thin Milky Way-type disk galaxy. We show that these accretion events produce several distinctive observational signatures in the stellar disk including: a ring-like feature in the outskirts; a significant flare; a central bar; and faint filamentary structures that (spuriously) resemble tidal streams. The final distribution of disk stars exhibits a complex vertical structure that is well-described by a standard ``thin-thick'' disk decomposition. We conclude that satellite-disk encounters of the kind expected in LCDM models can induce morphological features in galactic disks that are similar to those being discovered in the Milky Way, M31, and in other disk galaxies. These results highlight the significant role of CDM substructure in setting the structure of disk galaxies and driving galaxy evolution. Upcoming galactic structure surveys and astrometric satellites may be able to distinguish between competing cosmological models by testing whether the detailed structure of galactic disks is as excited as predicted by the CDM paradigm.Comment: Accepted version to appear in ApJ, 24 pages, 8 figures, LaTeX (uses emulateapj.cls). Comparison between the simulated ring-like features and the Monoceros ring stellar structure in the Milky Way performed; conclusions unaltere

    A Systematic Look at the Effects of Radiative Feedback on Disc Galaxy Formation

    Full text link
    Galaxy formation models and simulations rely on various feedback mechanisms to reproduce the observed baryonic scaling relations and galaxy morphologies. Although dwarf galaxy and giant elliptical properties can be explained using feedback from supernova and active galactic nuclei, Milky Way-sized galaxies still represent a challenge to current theories of galaxy formation. In this paper, we explore the possible role of feedback from stellar radiation in regulating the main properties of disk galaxies such as our own Milky Way. We have performed a suite of cosmological simulations of the same ∼1012M⊙\sim10^{12} {\rm M}_{\odot} halo selected based on its rather typical mass accretion history. We have implemented radiative feedback from young stars using a crude model of radiative transfer for ultraviolet (UV) and infrared (IR) radiation. However, the model is realistic enough such that the dust opacity plays a direct role in regulating the efficiency of our feedback mechanism. We have explored various models for the dust opacity, assuming different constant dust temperatures, as well as a varying dust temperature model. We find that while strong radiative feedback appears as a viable mechanism to regulate the stellar mass fraction in massive galaxies, it also prevents the formation of discs with reasonable morphologies. In models with strong stellar radiation feedback, stellar discs are systematically too thick while the gas disc morphology is completely destroyed due to the efficient mixing between the feedback-affected gas and its surroundings. At the resolution of our simulation suite, we find it impossible to preserve spiral disc morphology while at the same time expelling enough baryons to satisfy the abundance matching constraints.Comment: accepted to MNRA
    • …
    corecore