687 research outputs found

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    Densities of Minor-Closed Graph Families

    Full text link
    We define the limiting density of a minor-closed family of simple graphs F to be the smallest number k such that every n-vertex graph in F has at most kn(1+o(1)) edges, and we investigate the set of numbers that can be limiting densities. This set of numbers is countable, well-ordered, and closed; its order type is at least {\omega}^{\omega}. It is the closure of the set of densities of density-minimal graphs, graphs for which no minor has a greater ratio of edges to vertices. By analyzing density-minimal graphs of low densities, we find all limiting densities up to the first two cluster points of the set of limiting densities, 1 and 3/2. For multigraphs, the only possible limiting densities are the integers and the superparticular ratios i/(i+1).Comment: 19 pages, 4 figure

    Asymptotic Structure of Graphs with the Minimum Number of Triangles

    Get PDF
    We consider the problem of minimizing the number of triangles in a graph of given order and size and describe the asymptotic structure of extremal graphs. This is achieved by characterizing the set of flag algebra homomorphisms that minimize the triangle density.Comment: 22 pages; 2 figure

    On Exchangeability in Network Models

    Get PDF
    We derive representation theorems for exchangeable distributions on finite and infinite graphs using elementary arguments based on geometric and graph-theoretic concepts. Our results elucidate some of the key differences, and their implications, between statistical network models that are finitely exchangeable and models that define a consistent sequence of probability distributions on graphs of increasing size.Comment: Dedicated to the memory of Steve Fienber

    Diszkrét matematika = Discrete mathematics

    Get PDF
    A pályázat résztvevői igen aktívak voltak a 2006-2008 években. Nemcsak sok eredményt értek el, miket több mint 150 cikkben publikáltak, eredményesen népszerűsítették azokat. Több mint 100 konferencián vettek részt és adtak elő, felerészben meghívott, vagy plenáris előadóként. Hagyományos gráfelmélet Több extremális gráfproblémát oldottunk meg. Új eredményeket kaptunk Ramsey számokról, globális és lokális kromatikus számokról, Hamiltonkörök létezéséséről. a crossig numberről, gráf kapacitásokról és kizárt részgráfokról. Véletlen gráfok, nagy gráfok, regularitási lemma Nagy gráfok "hasonlóságait" vizsgáltuk. Különféle metrikák ekvivalensek. Űj eredeményeink: Hereditary Property Testing, Inverse Counting Lemma and the Uniqueness of Hypergraph Limit. Hipergráfok, egyéb kombinatorika Új Sperner tipusú tételekte kaptunk, aszimptotikusan meghatározva a halmazok max számát bizonyos kizárt struktőrák esetén. Több esetre megoldottuk a kizárt hipergráf problémát is. Elméleti számítástudomány Új ujjlenyomat kódokat és bioinformatikai eredményeket kaptunk. | The participants of the project were scientifically very active during the years 2006-2008. They did not only obtain many results, which are contained in their more than 150 papers appeared in strong journals, but effectively disseminated them in the scientific community. They participated and gave lectures in more than 100 conferences (with multiplicity), half of them were plenary or invited talks. Traditional graph theory Several extremal problems for graphs were solved. We obtained new results for certain Ramsey numbers, (local and global) chromatic numbers, existence of Hamiltonian cycles crossing numbers, graph capacities, and excluded subgraphs. Random graphs, large graphs, regularity lemma The "similarities" of large graphs were studied. We show that several different definitions of the metrics (and convergence) are equivalent. Several new results like the Hereditary Property Testing, Inverse Counting Lemma and the Uniqueness of Hypergraph Limit were proved Hypergraphs, other combinatorics New Sperner type theorems were obtained, asymptotically determining the maximum number of sets in a family of subsets with certain excluded configurations. Several cases of the excluded hypergraph problem were solved. Theoretical computer science New fingerprint codes and results in bioinformatics were found

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat
    corecore