10 research outputs found

    A note on blockers in posets

    Full text link
    The blocker AA^{*} of an antichain AA in a finite poset PP is the set of elements minimal with the property of having with each member of AA a common predecessor. The following is done: 1. The posets PP for which A=AA^{**}=A for all antichains are characterized. 2. The blocker AA^* of a symmetric antichain in the partition lattice is characterized. 3. Connections with the question of finding minimal size blocking sets for certain set families are discussed

    A note on stability for maximal FF-free graphs

    Get PDF
    Popielarz, Sahasrabudhe and Snyder in 2018 proved that maximal Kr+1K_{r+1}-free graphs with (11r)n22o(nr+1r)(1-\frac{1}{r})\frac{n^2}{2}-o(n^{\frac{r+1}{r}}) edges contain a complete rr-partite subgraph on no(n)n-o(n) vertices. This was very recently extended to odd cycles in place of K3K_3 by Wang, Wang, Yang and Yuan. We further extend it to some other 3-chromatic graphs, and obtain some other stability results along the way.Comment: 10 page

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(V(H)r1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete
    corecore