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Abstract
Popielarz, Sahasrabuddhe and Snyder in 2018 proved that maximal Krþ1-free graphs

with ð1 � 1
rÞ n2

2
� oðnrþ1

r Þ edges contain a complete r-partite subgraph on n � oðnÞ
vertices. This was very recently extended to odd cycles in place of K3 by Wang,

Wang, Yang and Yuan. We further extend it to some other 3-chromatic graphs, and

obtain some other stability results along the way.

Keywords Turán theory � Stability � Color-critical

1 Introduction

One of the most basic questions of graph theory is the following: given a graph F,

how many edges can an n-vertex graph G have if it is F-free, i.e. G does not contain

F as a subgraph? This quantity is denoted by exðn;FÞ. Turán’s theorem [19] states

that among n-vertex Krþ1-free graphs, the most edges are in the complete r-partite

graph with each partite set of order bn=rc or dn=re. This graph is now called the

Turán graph and we denote it by TrðnÞ. We denote the number of edges of TrðnÞ by

trðnÞ.
The Erd}os–Stone–Simonovits theorem [9, 11] states that it r � 2 and F has

chromatic number r þ 1, then exðn;FÞ ¼ ð1 þ oð1ÞÞtrðnÞ. Erd}os and Simonovits

[6, 7, 18] showed that if an n-vertex graph G is F-free and has almost trðnÞ edges,

then its structure is very similar to the structure of the Turán graph. This

phenomenon is called stability and there are several non-equivalent stability

theorems concerning the same graphs, where the differences come from the precise

form of ‘‘almost’’, ‘‘structure’’ and ‘‘very similar’’ in the previous sentence. In

particular, the Erd}os–Simonovits stability theorem [6, 7, 18] says that if G is F-free
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on n vertices with trðnÞ � oðn2Þ edges, then we can obtain TrðnÞ from G by adding

and deleting oðn2Þ edges.

Tyomkyn and Uzzell [20] initiated the study of new stability questions. We say

that a graph is F-saturated if it is F-free, but adding any new edge would create a

copy of F. We also say that G is maximal with respect to the F-free property. When

studying exðn;FÞ, one might assume without loss of generality that the n-vertex F-

free graph G is F-saturated, but if we consider the structure of G, this is a useful

assumption. Consider a Krþ1-saturated graph with close to trðnÞ edges. Does it

contain a large complete r-partite subgraph? Popielarz, Sahasrabuddhe and Snyder

[15] answered this question with the following theorem.

Theorem 1.1 (Popielarz, Sahasrabuddhe and Snyder [15]) Let r � 2 be an integer.

Every Krþ1-saturated graph G on n vertices with trðnÞ � oðnrþ1
r Þ edges contains a

complete r-partite subgraph on ð1 � oð1ÞÞn vertices. Moreover, there are Krþ1 -

saturated graphs on n vertices with trðnÞ � Xðnrþ1
r Þ edges that do not contain a

complete r-partite subgraph on ð1 � oð1ÞÞn vertices.

We remark that the order of magnitude notation hides here the following

statement: For every e[ 0 there is a d ¼ dðe; rÞ[ 0 such that every Krþ1-saturated

graph G on n vertices with at most trðnÞ � dn
rþ1

r edges contains a complete r-partite

subgraph on at least ð1 � eÞn vertices. We will use the less precise but more

intuitive notation in similar statements later as well.

Wang, Wang, Yang and Yuan [21] considered the same problem for odd cycles

in place of cliques and showed the following.

Theorem 1.2 Let k � 2 be an integer. Every C2kþ1 -saturated graph G on n vertices

with t2ðnÞ � oðn3
2Þ edges contains a complete bipartite subgraph on ð1 � oð1ÞÞn

vertices. On the other hand, there are C2kþ1 -saturated graphs on n vertices with

t2ðnÞ � Xðn3
2Þ edges that do not contain a complete bipartite subgraph on ð1 �

oð1ÞÞn vertices.

Here we study the same problem for other graphs. Let us start with a perhaps bold

conjecture.

Conjecture 1.3 Let r � 2 be an integer and F be a graph with chromatic number

r þ 1. Then every F-saturated graph G on n vertices with trðnÞ � oðnrþ1
r Þ edges

contains a complete r-partite subgraph on ð1 � oð1ÞÞn vertices.

Observe that in case of forbidden cliques or cycles, the complete multipartite

subgraph must be an induced subgraph. This is not the case in general, as we discuss

in Sect. 2.

If the above conjecture holds, the term oðnrþ1
r Þ cannot be improved in general, by

Theorem 1.1. Moreover, every 3-chromatic graph F contains an odd cycle, thus in

case r ¼ 2, the term oðn3
2Þ cannot be improved for any graph F by Theorem 1.2.

If Conjecture 1.3 does not hold, weaker versions still should. Let us propose two

such versions. We say that a vertex or edge of a graph is color-critical, if deleting

that vertex or edge results in a graph with smaller chromatic number.
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Conjecture 1.4 Let r � 2 be an integer and F be a graph with chromatic number
r þ 1 and a color-critical edge. Then every F-saturated graph G on n vertices with

trðnÞ � oðnrþ1
r Þ edges contains a complete r-partite subgraph G0 on ð1 � oð1ÞÞn

vertices.

We remark that in this case G0 has to be an induced subgraph. Kr and r-chromatic

graphs with a color-critical edge often behave similarly in extremal questions, see

e.g. [17] and see [16] for several stability results. Another reason to assume that this

conjecture might hold, and it might be easier to prove this than Conjecture 1.3 is the

following. The proofs of Theorems 1.1 and 1.2 both start with finding a not

necessarily complete r-partite graph with many vertices and edges, using only the F-

free property. After that, both proofs continue with showing that o(n) vertices are

incident to all the edges not in G between the partite sets, thus removing those

vertices completes the proof.

The first step of this proof holds for every graph in this generality, but we need a

very delicate version that fully uses the property of having trðnÞ � oðnðrþ1Þ=rÞ edges.

Fortunately, the version due to Popielarz, Sahasrabuddhe and Snyder (Lemma 2.3 in

[15]) easily extends to graphs with a color-critical edge. The version in [15] uses a

result of Andrásfai, Erd}os and Sós [3] that determined the largest possible minimum

degree in an n-vertex Krþ1-free graph that is not r-partite, and a result of Brouwer

[4] that determined the largest possible number of edges in such graphs.

Erd}os and Simonovits [10] extended the result of Andrásfai, Erd}os and Sós, while

Simonovits [17] extended the result of Brouwer asymptotically to any ðr þ 1Þ-
chromatic graph with a color-critical edge in place of Krþ1. Using those results

instead, the lemma below easily follows by the same proof as Lemma 2.3 in [15].

Lemma 1.5 Let r � 2 and F be an ðr þ 1Þ-chromatic graph with a critical edge.
Then there is a constant dF , depending only on F, such that the following holds. If
a[ 0 is small enough, n is sufficiently large, and G is an n-vertex F-free graph with

jEðGÞj � trðnÞ � an2, then there is a subset T � VðGÞ with jT j � dFan such that
G � T is r-partite.

We omit the proof of this lemma. We will prove Conjecture 1.4 for some

3-chromatic graphs with a color-critical edge, but we will use another lemma

instead, making this paper self-contained.

Theorem 1.6 Let F be a 3-chromatic graph with a color-critical edge in which
every edge has a vertex that is contained in a triangle. Then Conjecture 1.3 holds
for F.

Let us state a third conjecture, which is implied by the first one and implies the

second one.

Conjecture 1.7 Let r � 2 be an integer and F be a graph with chromatic number
r þ 1 and a color-critical vertex. Then every F-saturated graph G on n vertices with

trðnÞ � oðnrþ1
r Þ edges contains a complete r-partite subgraph on ð1 � oð1ÞÞn

vertices.
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A reason to assume that this conjecture might hold is that we are able to prove it

in the special case r ¼ 2 and the color-critical vertex is connected to all the other

vertices of F.

Theorem 1.8 Let F be a 3-partite graph with a vertex w that is connected to all the
other vertices of F. Then Conjecture 1.3 holds for F.

In our results we are interested only in the order of magnitude and make no effort

to optimize or even precisely state constant factors. We also assume basically

everywhere that n is sufficiently large, which means that that there is an n0

depending only on the preceding part and we assume that n� n0.

Given a graph G and a partition of its vertex set VðGÞ ¼ A1 [ . . . [ Ar, we say if

uv is a missing edge if u and v are in different parts and uv 62 EðGÞ.
The rest of this paper is organized as follows. In Sect. 2, we prove some

necessary lemmas and some unnecessary lemmas: related results that we do not use

later. In Sect. 3, we present the proof of Theorems 1.6 and 1.8.

2 Lemmas and Other Results

The main reason to assume that Theorem 1.1 can be extended as in Conjecture 1.3 is

that stability results often extend in a similar way. Let us show an example.

Theorem 2.1 (Nikiforov, Rousseau) For r � 3 there is a constant dr, depending
only on r, such that the following holds. For every 0\a� dr, every Kr -free n-vertex

graph G with at least ð r�2
2r�2

� aÞn2 edges contains an induced r-chromatic graph G0

of order at least ð1 � 2a1=3Þn and with minimum degree at least ðr�2
r�1

� 4a1=3Þn.

We can extend the above theorem to any r-chromatic graph.

Proposition 2.2 For r � 3 there is a constant d0
r, depending only on r, such that the

following holds. Let F be an r-chromatic graph and n be sufficiently large. For

every 0\a0 � d0
r, every F-free n-vertex graph G with at least ð r�2

2r�2
� a0Þn2 edges

contains an r-chromatic graph G0 of order at least ð1 � 2ða0Þ1=3Þn and with

minimum degree at least ðr�2
r�1

� 4ða0Þ1=3Þn.

Proof By a result of Alon and Shikhelman [2], for any e[ 0, if n is sufficiently

large, then any n-vertex F-free graph contains at most enr copies of Kr. By the

removal lemma, for any �[ 0 there is d[ 0 such that if an n-vertex graph contains

at most enr copies of Kr, then we can delete at most dn2 edges to obtain a Kr-free

graph. Let d0
r be any number smaller than dr from Theorem 2.1, d� dr � a0 be a

constant, e be as needed to apply the removal lemma, and n be sufficiently large so

that we can use the result of Alon and Shikhelman. Then we can apply the removal

lemma and delete dn2 edges to obtain a Kr-free graph. Then we can apply

Theorem 2.1 to this graph to find the desired G0. h

The simple proof of the above proposition works for many other stability results

concerning Krþ1. Let us mention another example without going into details:
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Korándi, Roberts and Scott [12] considered Krþ1-free graphs with at least trðnÞ �
drn

2 edges, and determined the largest number of edges one may need to remove

from such a graph to obtain an r-partite graph. If we consider an F-free graph where

F has chromatic number r þ 1, then we delete oðn2Þ edges first to remove the copies

of Krþ1 as in the above, and then apply their theorem to obtain an upper bound on

the number of edges we additionally need to remove. This bound will not be sharp

for two reason: we started with more edges (by oðn2Þ, and we also removed those

edges), and their Krþ1-free construction showing the sharpness of their result may

contain F. If F contains Krþ1, the second problem does not occur, and we obtain an

asymptotically sharp result.

The above proof method, i.e. the combination of the result of Alon and

Shikhelman and the removal lemma does not help with Conjecture 1.3, as we have

to remove almost quadratic many edges when using the removal lemma. We can

prove a stronger lemma for a much smaller class of graphs.

Lemma 2.3 Let F be a 3-chromatic graph with a color-critical vertex and n be

sufficiently large. Let 20jVðFÞj
n \a\ 1

11jVðFÞj2. If G is an n-vertex F-free graph with

jEðGÞj � exðn;FÞ � an2, then there is a bipartite subgraph H of G with at least

ð1 � 12jVðFÞjaÞn vertices, at least exðn;FÞ � 13jVðFÞjan2 edges and minimum

degree at least 1
2
� 1

11jVðFÞj

� �
n such that every vertex of H is adjacent in G to at most

|V(F)| vertices in the same partite set of H.

Proof Observe that F is a subgraph of K1;k;k for some k. Simonovits [17] showed

that for the complete ðr þ 1Þ-partite graph K ¼ K1;k;...;k we have exðn;KÞ� trðnÞ þ
kn (in fact he obtained a more general result, that implies an exact result for

exðn;KÞ, and he also described the asymptotic structure). This implies that

exðn;FÞ� 1
4

n2 þ kn.

We start by removing vertices of small degree, like the proofs of Theorem 1.1 in

[15] and Theorem 1.2 in [21]. Let G0 ¼ G and given Gi on ni ¼ n � i vertices, if

every vertex of Gi has degree at least ð1
2
� 1

11kÞni, then we let G0 ¼ Gi. If there is a

vertex v with degree fewer than ð1
2
� 1

11kÞni, then we let Giþ1 be the graph obtained

from Gi by deleting v. Let n0 be the number of vertices of G0. We have

jEðGÞj� jEðG0Þj þ
Xn�n0�1

i¼0

1

2
� 1

11k

� �
ðn � iÞ: ð1Þ

The right hand side of (1) is at most 1
4

n2 � 1
11k ðn2 � n02Þ=2 þ kn0, while the left hand

is at least 1
4

n2 � an2. This shows that n0 � ð1 � 12kaÞn.

Let us consider a partition of G0 into two parts A and B with the most edges

between parts. By the Erd}os–Simonovits stability theorem, there are oðn2Þ edges

inside the parts. We also have that if a vertex v is connected to d vertices in its part,

say A, then it is connected to at least d vertices in the other part B. On the other
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hand, v is connected to at least ð1
2
� 1

11kÞn0 � d vertices of B. This implies that

d �ð1
4
� 1

22kÞn0. Thus we have that v (and each other vertex) is connected to at least

ð1
4
� 1

22kÞn0 vertices in the other part.

Let us assume that jAj � jBj. We call a vertex in A good if it is connected to at

most 1
22k n0 vertices in its part, and bad otherwise. Observe that a good vertex has at

least ð1
2
� 3

22kÞn0 � jBj � 3
22k n0 neighbors in B. If u 2 A is connected to k good ver-

tices in A, then these k þ 1 vertices have at least k common neighbors in B, thus

there is a K1;k;k in G, a contradiction. Indeed, u has at least ð1
4
� 1

22kÞn0 neighbors in B,

and each good vertex in A is connected to all but at most 3
22k of these vertices. Thus

the k þ 1 vertices chosen from A have at least ð1
4
� 1þ3k

22k Þn0 � k common neighbors in

B. This shows that every bad vertex has at least 1
22k n0 � k bad neighbors in its part. If

there exists a bad vertex, then there are HðnÞ bad vertices. Each of them is con-

nected to HðnÞ vertices in the same part, thus there are Hðn2Þ edges inside the parts,

a contradiction.

Therefore, we can assume that every vertex of A is good, thus every vertex in A is

connected to at least ð1
2
� 3

22kÞn0 vertices on the other side. This in particular shows

that ð1
2
� 3

22kÞn0 � jAj; jBj � ð1
2
þ 3

22kÞn0. Now we call a vertex in B good if it is con-

nected to at most 1
22k n0 vertices in its part, and bad otherwise. Then a good vertex in

B has at least ð1
2
� 3

22kÞn0 � jAj � 6
22k n0 neighbors in A. By the same reasoning as for

bad vertices in A, we obtain that the existence of one bad vertex in B would imply

the existence of HðnÞ bad vertices in B and Hðn2Þ edges inside the parts, a con-

tradiction. Thus we can assume that every vertex is good.

Assume now that a vertex v 2 A is connected to at least k vertices in A. Then v

and k of its neighbors in A are each connected to all but at most 3
11k n0 vertices of B.

Thus the number of vertices in B that are not connected to some of them is at most
3

11k ðk þ 1Þn0. Therefore there are at least k other vertices in B which are common

neighbors of the k þ 1 vertices picked earlier, hence they form a copy of K1;k;k, a

contradiction.

This shows that there are at most ðk � 1Þn\an2 edges inside A and B. Let us

delete all the edges inside the parts A and B from G0 to obtain H. Clearly we have

deleted at most 12kan2 edges to get G0 and at most an2 edges to get H. The bounds

on the number of vertices and the minimum degree of H are obvious. h

Recall that the bipartite graph we found is not necessarily induced. However, for

some graphs we can strengthen the above result.

Corollary 2.4 Let F be a 3-chromatic graph with a critical vertex such that F can
also be obtained from a bipartite graph by adding a matching into one of the parts.

Let n be sufficiently large and 20jVðFÞj
n \a\ 1

11jVðFÞj2. If G is an n-vertex F-free graph

with jEðGÞj � exðn;FÞ � an2, then there is an induced bipartite subgraph H0 of G

with at least ð1 � 13aÞn vertices, at least exðn;FÞ � 14jVðFÞjan2 edges and

minimum degree at least ð1
2
� 1

10jVðFÞjÞn.
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Proof Let G0 be the graph as in the proof of Lemma 2.3. We will show that inside

the partite sets A, B of G0 there is no matching with |V(F)| edges. Indeed, the 2|V(F)|

vertices of that matching would have a common neighbor in the other partite set by

the minimum degree condition, but this way we find a copy of F, a contradiction.

This and the bound on the maximum degree implies that the subgraph of G inside A
and inside B has at most ð2jVðFÞj � 2ÞjVðFÞj � 1 edges. Indeed, every edge shares

a vertex with at most 2jVðFÞj � 2 other edges, thus we can greedily pick |V(F)|

independent edges. See [1] and [5] for more precise bounds on the number of edges.

Therefore, we can remove the endpoints of those O(1) edges to obtain H0. It is

easy to see that H0 has the desired number of vertices, edges and minimum degree,

using that n is sufficiently large. h

We remark that if F cannot be obtained from a bipartite graph by adding a

matching into one of the parts, then a similar strengthening is impossible. Indeed, if

we add a matching to one of the parts of the Turán graph, the resulting graph is F-

free, and we need to remove about n/4 vertices to obtain an induced complete

bipartite graph.

3 Proofs

Proof of Theorem 1.8 Let n be sufficiently large and G be an n-vertex F-saturated

graph with t2ðnÞ � oðn3=2Þ edges. First we apply Lemma 2.3 with a ¼ oðn�1=2Þ to

obtain H with partite sets A and B. We will also use the subgraph G0 of G from the

proof of Lemma 2.3, that is H with additional edges inside the parts, such that every

vertex is incident to at most |V(F)| such edges. Let T denote the set of vertices not in

G0, thus jTj ¼ oðn1=2Þ. For v 2 T , let A(v) denote its neighborhood in A and B(v)

denote its neighborhood in B. Let U(v) denote the smaller of A(v) and B(v) (if they

have the same number of vertices, we choose one of them arbitrarily). Let U0 ¼
[v2T UðvÞ and for 1� i� jVðFÞj, Ui denotes the set of vertices that are connected to

a vertex of Ui�1 in the same parts. As the degrees inside A and B are at most |V(F)|,

we have that jUjVðFÞjj � jVðFÞjjVðFÞjjU0j.
Let us now consider a partition of F into two connected subgraphs F0 and F1 such

that w (the vertex that is connected to all the other vertices of F) is in F1. Let Q
denote the subgraph induced on the vertices in F1 that are connected to some

vertices of F0. Then w is in Q, thus Q is also connected.

Consider the copies of F0 inside A and those copies of Q inside B that can be

extended to a copy of F1 in G (note that we do not care where the additional vertices

come from or how many such extensions exist). Observe that every vertex v 2 A is

contained in O(1) copies of F0. Indeed, as F0 is connected, there is a path of length

at most |V(F)| from v to every vertex of such copies, and there are at most

jVðFÞjjVðFÞj
vertices in A that can be reached from v by a path of length at most

|V(F)| that is totally inside A. If v 2 B, then there are O(1) copies of Q containing it

by the same reasoning (in fact there is a path of length at most 2 from v to other

vertices of Q in this case).
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Let us assume that there are at least n3=4 copies of F0 inside A and at least n3=4

copies of Q inside B. For any such copy of Q, we pick an extension to F1, and

observe that it intersects O(1) copies of F0 inside A. For the other copies of F0, there

is a vertex u in the copy of F0 and a vertex v in the copy of Q such that uv is not an

edge in G, by the F-free property. This way for n3=2 � Oðn3=4Þ pairs of F0 and F1,

we found a missing edge. As both u and v are counted O(1) times, this means that

Xðn3=2Þ edges between A and B are missing from G. There are at most n2=4 �
Xðn3=2Þ edges of G between A and B, O(n) edges inside A and B, and at most

njTj ¼ oðn3=2Þ edges of G are incident to T. Therefore, the total number of edges of

G is at most the sum of these, contradicting our assumption.

We obtained that there are fewer than n3=4 copies of either F0 in A or Q in B. We

take all the vertices of each such copy to form the set U0
1. Then we repeat this with

copies of F0 in B and copies of Q in A to obtain U0
2, and then with each other

bipartition of F into two connected parts to obtain sets U0
i of vertices. Let U be the

union of all the sets Uj and U0
i .

Claim 3.1 jUj ¼ oðnÞ.

Proof For every i, U0
i has cardinality at most n3=4, and we have bounded many of

them, thus their total cardinality is Oðn3=4Þ. We also have O(1) copies of Uj, each of

cardinality OðjU0jÞ, thus it is enough to show that jU0j ¼ oðnÞ.
Let F0 be the bipartite graph we obtain by deleting w from F. By the K}ovári, Sós,

Turán theorem [13], exðn;F0Þ ¼ oðn2Þ, thus there exists an m such that if n�m,

then exðn;F0Þ � n2=5. Consider a vertex v 2 T . For the vertices v with jUðvÞj\m,

altogether at most mjT j ¼ oðnÞ vertices are in the sets U(v). Let T 0 denote the set of

vertices v 2 T with jUðvÞj �m. We take |U(v)| vertices from both A(v) and B(v), and

consider the bipartite graph G(v) defined by the edges of H between these subsets.

Clearly G(v) is F0-free, thus there are at most 4jUðvÞj2=5 edges of G0 between these

two parts and at least jUðvÞj2=5 edges are missing. This shows that XðjUðvÞj2Þ edges

are missing between A(v) and B(v).

We know that in total oðn3=2Þ edges are missing between A and B, thusP
v2T 0 jUðvÞj2 ¼ oðn3=2Þ. On the other hand, by the Cauchy-Schwartz inequality we

have that
P

v2T 0 jUðvÞj2 �ð
P

v2T 0 jUðvÞjÞ2=jT 0j. This implies
P

v2T 0 jUðvÞj ¼ oðnÞ,
completing the proof. h

Let us return to the proof of the theorem. Let G1 be the graph we obtain by

deleting the vertices of U from H. We will show that G1 is a complete bipartite

graph with partite sets A0 ¼ A n U and B0 ¼ B n U. Assume indirectly that u 2 A0,
v 2 B0 and uv is not an edge of G1, thus not an edge of G. Then adding the edge uv
to G creates a copy of F, which we denote by F�. The vertex w of F� is either u, v, or

connected to both u and v, thus cannot be in T. Assume without loss of generality

that w 2 A.

Let R1 denote the set of the neighbors of v in F�, then they are either in A, or in B.

But in B, elements of R1 cannot belong to Ui with 0� i� jVðFÞj � 1 (as then v
would be in Uiþ1 and not in B0). Let Rj for j\jVðFÞj denote the set of neighbors of
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the vertices of Rj�1 \ B in F�. Then similarly, we have that elements of Rj belong to

A or B, and those in B cannot belong to Ui with 0� i� jVðFÞj � j. Rj stops

increasing before we arrive to U0, let R denote the final Rj obtained this way. Then

R \ B induces a connected subgraph of F� by construction. Let F0 denote this

subgraph, F1 denote the remaining part of F� and Q denote the subgraph of F�

induced on R \ A. Then this is a partition as described in the construction of U, thus

we have moved each vertices of R \ A or R \ B to U. In particular u or v is in U and

not in G1, a contradiction. h

Proof of Theorem 1.6 We start the proof similarly to that of Theorem 1.8, but the set

U of vertices we delete will be slightly different. We apply Corollary 2.4 with

a ¼ oðn�1=2Þ to obtain H0 with partite sets A and B. Let T denote the set of vertices

not in H0, thus jTj ¼ oðn1=2Þ. For each vertex v 2 T , let A(v) denote its

neighborhood in A, B(v) denote its neighborhood in B and U(v) denote the smaller

of A(v) and B(v) (an arbitrary one of them in case they have the same size), as in the

proof of Theorem 1.8. We let U0 ¼ [v2T UðvÞ, thus jU0j ¼ oðnÞ as in the proof of

Theorem 1.8.

Observe that every vertex u 2 AðvÞ is connected to fewer than |V(F)| vertices in

B(v). Indeed, otherwise these |V(F)| vertices have |V(F)| other common neighbors in

A by the minimum degree condition, and these 2|V(F)| vertices together with u and v
form a KjVðFÞj;jVðFÞjþ2 with an additional edge in one of the parts. This subgraph

clearly contains F, a contradiction.

For every v 2 T , this means that the vertices of U(v) have at most |V(F)||U(v)|

common neighbors with v in the other partite set of H0. Let U0ðvÞ be the set of those

common neighbors and let U0 ¼ [v2T U0ðvÞ. Then jU0j � jVðFÞjjU0j ¼ oðnÞ.
Consider now an edge uv inside T. We have that u and v have fewer than |V(F)|

common neighbors in A (and at most |V(F)| common neighbors in B) by the same

reasoning: otherwise we can find |V(F)| common neighbors of those vertices in B by

the minimum degree condition, giving us a copy of KjVðFÞj;jVðFÞjþ2, a contradiction.

Let U00ðuvÞ denote the set of these fewer than 2|V(F)| common neighbors and let

U00 ¼ [u;v2T ;uv2EðGÞU
00ðuvÞ. Clearly jU00j ¼ oðnÞ.

Let U ¼ U0 [ U0 [ U00. We delete U from H0 to obtain G2.

Assume that u 2 A n U0, v 2 B n U0 and uv is not an edge in G2, thus not an edge

in G. Then adding the edge uv to G creates a copy of F that we denote by F�. There

is a triangle containing u or v, say uxy in F�. One of its vertices, say x is in T, since

H0 is bipartite. Then UðxÞ ¼ BðxÞ, since u 62 U0. As y is connected to u, we have

y 2 B [ T . If y 2 B, then y 2 U0, but then its common neighbors with x, including u,

were moved to U0, a contradiction. Thus y 2 T , but then u 2 U00ðxyÞ � U, a

contradiction. h
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