7 research outputs found

    Thomassen's Choosability Argument Revisited

    Full text link
    Thomassen (1994) proved that every planar graph is 5-choosable. This result was generalised by {\v{S}}krekovski (1998) and He et al. (2008), who proved that every K5K_5-minor-free graph is 5-choosable. Both proofs rely on the characterisation of K5K_5-minor-free graphs due to Wagner (1937). This paper proves the same result without using Wagner's structure theorem or even planar embeddings. Given that there is no structure theorem for graphs with no K6K_6-minor, we argue that this proof suggests a possible approach for attacking the Hadwiger Conjecture

    Limits of degeneracy for colouring graphs with forbidden minors

    Full text link
    Motivated by Hadwiger's conjecture, Seymour asked which graphs HH have the property that every non-null graph GG with no HH minor has a vertex of degree at most V(H)2|V(H)|-2. We show that for every monotone graph family F\mathcal{F} with strongly sublinear separators, all sufficiently large bipartite graphs HFH \in \mathcal{F} with bounded maximum degree have this property. None of the conditions that HH belongs to F\mathcal{F}, that HH is bipartite and that HH has bounded maximum degree can be omitted.Comment: 22 page

    Rooted structures in graphs: a project on Hadwiger's conjecture, rooted minors, and Tutte cycles

    Get PDF
    Hadwigers Vermutung ist eine der anspruchsvollsten Vermutungen für Graphentheoretiker und bietet eine weitreichende Verallgemeinerung des Vierfarbensatzes. Ausgehend von dieser offenen Frage der strukturellen Graphentheorie werden gewurzelte Strukturen in Graphen diskutiert. Eine Transversale einer Partition ist definiert als eine Menge, welche genau ein Element aus jeder Menge der Partition enthält und sonst nichts. Für einen Graphen G und eine Teilmenge T seiner Knotenmenge ist ein gewurzelter Minor von G ein Minor, der T als Transversale seiner Taschen enthält. Sei T eine Transversale einer Färbung eines Graphen, sodass es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T gibt; dann stellt sich die Frage, ob es möglich ist, die Existenz eines vollständigen, in T gewurzelten Minors zu gewährleisten. Diese Frage ist eng mit Hadwigers Vermutung verwoben: Eine positive Antwort würde Hadwigers Vermutung für eindeutig färbbare Graphen bestätigen. In dieser Arbeit wird ebendiese Fragestellung untersucht sowie weitere Konzepte vorgestellt, welche bekannte Ideen der strukturellen Graphentheorie um eine Verwurzelung erweitern. Beispielsweise wird diskutiert, inwiefern hoch zusammenhängende Teilmengen der Knotenmenge einen hoch zusammenhängenden, gewurzelten Minor erzwingen. Zudem werden verschiedene Ideen von Hamiltonizität in planaren und nicht-planaren Graphen behandelt.Hadwiger's Conjecture is one of the most tantalising conjectures for graph theorists and offers a far-reaching generalisation of the Four-Colour-Theorem. Based on this major issue in structural graph theory, this thesis explores rooted structures in graphs. A transversal of a partition is a set which contains exactly one element from each member of the partition and nothing else. Given a graph G and a subset T of its vertex set, a rooted minor of G is a minor such that T is a transversal of its branch set. Assume that a graph has a transversal T of one of its colourings such that there is a system of edge-disjoint paths between all vertices from T; it comes natural to ask whether such graphs contain a minor rooted at T. This question of containment is strongly related to Hadwiger's Conjecture; indeed, a positive answer would prove Hadwiger's Conjecture for uniquely colourable graphs. This thesis studies the aforementioned question and besides, presents several other concepts of attaching rooted relatedness to ideas in structural graph theory. For instance, whether a highly connected subset of the vertex set forces a highly connected rooted minor. Moreover, several ideas of Hamiltonicity in planar and non-planar graphs are discussed

    Extremal functions for rooted minors

    No full text
    The graph G contains a graph H as a minor if there exist pairwise disjoint sets {S-i subset of V(G)vertical bar i = 1,..., vertical bar V(H)vertical bar} such that for every i, G[S-i] is a connected subgraph and for every edge uv in H, there exists an edge of G with one end in S-u and the other end in S-v. A rooted H minor in G is a minor where each S-i of the minor contains a predetermined x(i) is an element of V(G). We prove that if the constant c is such that every graph on n vertices with cn edges contains an H minor, then every vertical bar V(H)vertical bar-connected graph G with (9c + 26,833 vertical bar V(H)vertical bar)vertical bar V(G)vertical bar edges contains a rooted H minor for every choice of vertices {x(1),...., x(vertical bar V(H)vertical bar)} subset of V(G). The proof methodology is sufficiently robust to find the exact extremal function for an infinite family of rooted bipartite minors previously studied by Jorgensen, Kawarabayashi, and Bohme and Mohar. (C) 2008 Wiley Periodicals, Inc
    corecore