192 research outputs found

    On the communication complexity of sparse set disjointness and exists-equal problems

    Full text link
    In this paper we study the two player randomized communication complexity of the sparse set disjointness and the exists-equal problems and give matching lower and upper bounds (up to constant factors) for any number of rounds for both of these problems. In the sparse set disjointness problem, each player receives a k-subset of [m] and the goal is to determine whether the sets intersect. For this problem, we give a protocol that communicates a total of O(k\log^{(r)}k) bits over r rounds and errs with very small probability. Here we can take r=\log^{*}k to obtain a O(k) total communication \log^{*}k-round protocol with exponentially small error probability, improving on the O(k)-bits O(\log k)-round constant error probability protocol of Hastad and Wigderson from 1997. In the exist-equal problem, the players receive vectors x,y\in [t]^n and the goal is to determine whether there exists a coordinate i such that x_i=y_i. Namely, the exists-equal problem is the OR of n equality problems. Observe that exists-equal is an instance of sparse set disjointness with k=n, hence the protocol above applies here as well, giving an O(n\log^{(r)}n) upper bound. Our main technical contribution in this paper is a matching lower bound: we show that when t=\Omega(n), any r-round randomized protocol for the exists-equal problem with error probability at most 1/3 should have a message of size \Omega(n\log^{(r)}n). Our lower bound holds even for super-constant r <= \log^*n, showing that any O(n) bits exists-equal protocol should have \log^*n - O(1) rounds

    Bisection (Band)Width of Product Networks with Application to Data Centers

    Get PDF
    Abstract. The bisection width of interconnection networks has always been important in parallel computing, since it bounds the amount of information that can be moved from one side of a network to another, i.e., the bisection bandwidth. The problem of finding the exact bisection width of the multidimensional torus was posed by Leighton and has remained open for 20 years. In this paper we provide the exact value of the bisection width of the torus, as well as of several ddimensional classical parallel topologies that can be obtained by the application of the Cartesian product of graphs. To do so, we first provide two general results that allow to obtain upper and lower bounds on the bisection width of a product graph as a function of some properties of its factor graphs. We also apply these results to obtain bounds for the bisection bandwidth of a d-dimensional BCube network, a recently proposed topology for data centers

    Bisection (Band)Width of Product Networks with Application to Data Centers

    Get PDF
    Abstract. The bisection width of interconnection networks has always been important in parallel computing, since it bounds the amount of information that can be moved from one side of a network to another, i.e., the bisection bandwidth. Finding its exact value has proven to be challenging for some network families. For instance, the problem of finding the exact bisection width of the multidimensional torus was posed by Leighton and has remained open for almost 20 years. In this paper we provide the exact value of the bisection width of the torus, as well as of several d-dimensional classical parallel topologies that can be obtained by the application of the Cartesian product of graphs. To do so, we first provide two general results that allow to obtain upper and lower bounds on the bisection width of a product graph as a function of some properties of its factor graphs. We also apply these results to obtain bounds for the bisection bandwidth of a d-dimensional BCube network, a recently proposed topology for data centers

    Applications of cut polyhedra

    Get PDF
    • …
    corecore