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Abstract. The bisection width of interconnection networks has always been im-
portant in parallel computing, since it bounds the amount of information that can
be moved from one side of a network to another, i.e., the bisection bandwidth.
The problem of finding the exact bisection width of the multidimensional torus
was posed by Leighton and has remained open for 20 years. In this paper we
provide the exact value of the bisection width of the torus, as well as of several d-
dimensional classical parallel topologies that can be obtained by the application
of the Cartesian product of graphs. To do so, we first provide two general results
that allow to obtain upper and lower bounds on the bisection width of a product
graph as a function of some properties of its factor graphs. We also apply these
results to obtain bounds for the bisection bandwidth of a d-dimensional BCube
network, a recently proposed topology for data centers.

Keywords: Bisection bandwidth, bisection width, torus, BCube, product graphs, com-
plete binary trees, extended trees, mesh-connected trees.

1 Introduction
The bisection width and the bisection bandwidth of interconnection networks have al-
ways been two important parameters of a network. The first one reflects the smallest
number of links which have to be removed to split the network in two equal parts, while
the second one bounds the amount of data that can be moved between these parts. In
general, both values are derivable one from the other, which is the reason why most
previous work has been devoted to only one of then (in particular, the bisection width).

The bisection width has been a typical goodness parameter to evaluate and com-
pare interconnection networks for parallel architectures [14, 7, 5]. This interest has been
transferred to the Network-On-Chip topologies, as the natural successors of the parallel
architectures of the 90’s [13, 15, 22, 19]. The bisection (band)width is also nowadays
being used as a reference parameter on the analysis of the latest topologies that are
being deployed in data centers. This can be seen in recent papers which propose new
topologies, like BCube [11] or DCell [12]. The bisection (band)width is used to com-
pare these new topologies with classical topologies, like grids, tori, and hypercubes, or
with other datacenter topologies, like trees and fat trees.

? This research was supported in part by the Comunidad de Madrid grant S2009TIC-1692,
Spanish MICINN grant TEC2011-29688-C02-01, and National Natural Science Foundation
of China grant 61020106002.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357548285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Finding the exact value of the bisection width is hard in general. Computing it has
proven to be challenging even for very simple families of graphs. For instance, the prob-
lem of finding the exact bisection width of the multidimensional torus was posed by
Leighton [14, Problem 1.281] and has remained open for 20 years. One general family
of interconnection networks, of which the torus is a subfamily, is the family of product
networks. The topology of these networks is obtained by combining factor graphs with
the Cartesian product operator. This technique allows to build large networks from the
smaller factor networks. Many popular interconnection networks are instances of pro-
duct networks, like the grid and the hypercube. In this paper we derive techniques to
bound the bisection width of product networks, and apply these techniques to obtain the
bisection width of some product network families.

Related Work To our knowledge, Youssef [20, 21] was among the first to explore
the properties of product networks as a family. He presented the idea of working with
product networks as a divide-and-conquer problem, obtaining important properties of a
product network in terms of the properties of its factor graphs.

The bisection width of arrays and tori was explored by Dally [6] and Leighton [14]
in the early 90s, presenting exact results for these networks when the number of nodes
per dimension was even. The case when there are odd number of nodes per dimension
was left open. Rolim et al. [18] gave the exact values for the bisection width of 2 and 3-
dimensional grids and tori, but left open the question for longer number of dimensions.

For the special case in which all the factors are isomorphic, Efe and Fernández [9]
provided a lower bound on the bisection width of a product graph as a function of a
new parameter of a factor network they defined, the maximal congestion. Nakano [16]
presented the exact value of the bisection width for the Cartesian product of isomorphic
paths and cliques (i.e., square grids and Hamming graphs). If the factor graphs have k
nodes, he proved that the d-dimensional square grid has bisection width kd−1 when k
is even, and (kd−1)

(k−1) when k is odd. Similarly, the square Hamming graph has bisection

width kd+1 when k is even, and (k+1) (kd−1)
4 when k is odd. The exact bisection width

of the d-dimensional square grid was found independently by Efe and Feng [8].
For the present paper it is very relevant the work of Azizoglu and Egecioglu. In [2]

and [4] they studied the relationship between the isoperimetric number and the bisection
width of different product networks. In the former paper, they find the exact value of the
bisection width of the cylinders (products of paths and rings) with even number of nodes
in its largest dimension. In the latter reference they found the exact bisection width of
the grid A(d)

k1,k2,...,kd
, with ki nodes along dimension i, and where k1 ≥ k2 ≥ . . . ≥ kd.

The value of this bisection width is BW (A
(d)
k1,k2,...,kd

) =
∑α
i=1 Ci, where α is the

smallest index for which ki is even (α = d if no index is even), and Ci =
∏d
j=i+1 kj .

Since this value will appear frequently, we will use the following notation throughout
the rest of the paper, Ψ(α) =

∑α
i=1 Ci =

∑α
i=1

∏d
j=i+1 kj .

Contributions In this paper we present two theorems that allow to derive lower and
upper bounds on the bisection width of a product network as a function of some simple
parameters of its factor graphs. Then, we apply these results to obtain the exact value
of the bisection width for several families of product networks. The families presented



are of interest because they have been proposed as interconnection networks for parallel
architectures, but their bisection width has never been derived exactly.

One of the most interesting contribution of this paper is the exact value of the bi-
section width of the torus, since, as mentioned before, this problem has been open
for almost 20 years. We find here that the exact value of the bisection width of a d-
dimensional torus T (d)

k1,k2,...,kd
, that has ki nodes along dimension i, and where k1 ≥

k2 ≥ . . . ≥ kd, is exactly twice the bisection width of the grid of similar dimensions
A

(d)
k1,k2,...,kd

. I.e., BW (T
(d)
k1,k2,...,kd

) = 2Ψ(α) = 2
∑α
i=1 Ci, where α is the smallest

index for which ki is even (α = d if no index is even), and Ci =
∏d
j=i+1 kj . In ad-

dition to the result for the torus, we provide the exact value for the bisection width
of products of complete binary trees (CBT) of any size (mesh-connected trees [10]),
products of extended CBT (which are CBT with the leaves connected with a path [10]),
products of CBT and paths, and products of extended CBT and rings. To obtain the
bisection bandwidth of these networks, we assume that every edge removed by the
bisection width is in fact a duplex link with bandwidth of T in each direction. This di-
rectly implies that for any of these networks G, the bisection bandwidth is computed as
BBW (G) = 2T · BW (G).

The general upper and lower bound results are also used to derive bounds on the
bisection bandwidth of a topology proposed for datacenters, the BCube. A BCube is
the Cartesian product of factors networks formed by k nodes connected via a k-port
switch (where the switch is not considered to be a node). An essential difference of this
topology from the previous one is that edges do not connect nodes directly, and the di-
rect relation between bisection width and bisection bandwidth does not hold anymore.
In networks with switches like this one, the switching capacity s of the switch comes
into play as well. Since the bisection bandwidth is the parameter of interest in datacen-
ters, we derive bounds on its value for two cases: when the bottleneck for the bisection
bandwidth is at the links (Model A), and when it is at the switches (Model B).

Table 1 summarizes the results derived for the bisection bandwidth obtained for the
different parallel topologies and for BCube. As can be seen, for the former the values

Table 1. Bisection bandwidth of different product networks

Product graph Factor graphs β(G) CC(G) Bisection bandwidth
Torus Ring 1/8 2 4T · Ψ(α)

Product of extended CBT XTs 1/8 2 4T · Ψ(α)
Product of extended CBT & rings Rings & XTs 1/8 2 4T · Ψ(α)

Mesh connected trees CBT 1/4 1 2T · Ψ(α)
Product of CBT and paths Paths & CBTs 1/4 1 2T · Ψ(α)

BCube
Model A

even k−1
k2

k
2

2T kd+1

4(k−1)
≤ BBW (BCA

(d)
k ) ≤ 2T kd

2

odd 1
k+1

k−1
2

2T k+1
4

kd−1
k−1

≤ BBW (BCA
(d)
k ) ≤ 2T kd−1

2

Model B
even k−1

2k
1 s kd

2(k−1)
≤ BBW (BCB

(d)
k ) ≤ s kd−1

k−1

odd k
2(k+1)

1 s k+1
2k

kd−1
k−1

≤ BBW (BCB
(d)
k ) ≤ s kd−1

k−1



obtained are exact, while for the latter the upper and lower bounds found do no match
exactly. However, they differ by less than a factor of two.

The rest of the paper is organized as follows. Section 2 presents some basic defini-
tions used in the rest of sections. In Section 3 we provide the general results to derive
bounds on the bisection bandwidth of product networks. Section 4 and Section 5 present
our results for the bisection bandwidth of some classical parallel topologies. Bounds on
the bisection bandwidth of the BCube network are presented in Section 6.

Due to space limitations, some proofs have been omitted. They can be found in [1].

2 Definitions
Graphs and Bisections Given a graph3 G, we denote its sets of vertices and edges as
V (G) and E(G), respectively. In some cases, when it is clear from the context, only V
or E will be used, omitting the graph G. Unless otherwise stated, the graphs considered
are undirected.

Given a graph G with n nodes, we use S(G) to denote a subset of V (G) such that
|S(G)| ≤ n

2 . We also use ∂GS(G) to denote the set of edges connecting S(G) and
V (G) \S(G). Formally, ∂GS(G) = {(u, v) ∈ E(G) : u ∈ S(G), v ∈ G \S(G)}. The
graph G may be omitted from this notation when it is clear from the context.

The main object of this work is to calculate the bisection width and bisection band-
width of different product networks. The bisection width of an n-node graphG, denoted
byBW (G), is the smallest number of edges that have to be removed fromG to partition
it in two halves. Formally, BW (G) = minS:|S|=bn2 c |∂

GS|. The bisection bandwidth
of a network G, denoted by BBW (G), is the minimal amount of traffic which can be
transferred between any two halves of the network when its links are transmitting at
full speed. As mentioned above, unless otherwise stated we assume that all the links in
a network G are duplex and have the same capacity T in each direction. Then, we can
generally assume that the relation between the bisection bandwidth and the bisection
width is BBW (G) = 2T ·BW (G).
Factor and Product Graphs We define first the Cartesian product of graphs.

Definition 1. The d-dimensional Cartesian product of graphs G1, G2, ..., Gd, denoted
by G1 ×G2 × · · · ×Gd, is the graph with vertex set V (G1)× V (G2)× · · · × V (Gd),
in which vertices (u1, ..., ui, ..., ud) and (v1, ..., vi, ..., vd) are adjacent if and only if
(ui, vi) ∈ E(Gi) and uj = vj for all j 6= i.

The graphs G1, G2, ..., Gd are called the factors of G1 × G2 × · · · × Gd. Observe
that G1 × G2 × · · · × Gd contains

∏
j 6=i |V (Gj)| disjoint copies of Gi, which form

dimension i.
We define now some of the basic factor graphs that will be considered. The path of

k vertices, denoted by Pk, is a graph such that V (Pk) = {0, 1, . . . , k − 1} and where
E(Pk) = {(i, i + 1) : i ∈ [0, k − 2]} . The complete graph (a.k.a. the clique) of k
vertices, denoted by Kk, is a graph such that V (Kk) = {0, 1, . . . , k − 1} and where
E(Kk) = {(i, j) : (j 6= i) ∧ (i, j ∈ V (Kk))}. The r-complete graph of k vertices
denoted by rKk, is a graph such that V (rKk) = {0, 1, . . . , k − 1} and where E(rKk)

3 Unless otherwise stated we will use the terms graph and network indistinctly.



is a multiset such that each pair of vertices i, j ∈ V (rKk) is connected with r parallel
edges. (i.e., each e ∈ E(rKk) has multiplicity r).

Using these and other graphs as factors, we will define, across the text, different
d-dimensional Cartesian product graphs. For convenience, for these graphs we will use
the general notation G(d)

k1,...,kd
, where G is the name of the graph, the superscript (d)

means that it is a d-dimensional graph, and k1, . . . kd are the number of vertices in each
dimension. (Superscript and subscripts may be omitted when clear from the context.)
It will always hold that k1 ≥ k2 ≥ . . . ≥ kd, i.e., the factor graphs are sorted by
decreasing number of vertices. We will often use n to denote the number of nodes a the
graph G(d)

k1,...,kd
, i.e., n = k1k2 · · · kd, and we will always use α to denote the index of

the lowest dimension with an even number of vertices (if there is no such dimension,
α = d, where d is the index of the lowest dimension).

According to this notation we will present different d-dimensional product graphs
as follows. The d-dimensional array, denoted by A(d)

k1,...,kd
, is the Cartesian product of

d paths of k1, . . . , kd vertices, respectively. I.e., A(d)
k1,...,kd

= Pk1 × Pk2 × · · · × Pkd .

The d-dimensional r-Hamming graph, denoted by rH(d)
k1,...,kd

, is the Cartesian product

of d r-complete graphs of k1, . . . , kd nodes, respectively. I.e., rH(d)
k1,...,kd

= rKk1 ×
rKk2 × · · · × rKkd . Observe that the Hamming graph [3] is the particular case of the
r-Hamming graph, with r = 1. For brevity, we use H(d)

k1,...,kd
instead of 1H

(d)
k1,...,kd

, to
denote the Hamming graph.
Boundaries and Partitions We define now the dimension-normalized boundary [4].
Let G(d)

k1,...,kd
be a d-dimensional product graph and S(G) a subset of V (G). Then, the

dimension-normalized boundary of S(G), denoted by BG(S), is defined as BG(S) =
|∂G

1 S|
σ1

+
|∂G

2 S|
σ2

+ . . . +
|∂G

d S|
σd

, where, for each i ∈ [1, d], ∂Gi is ∂G applied to the

dimension i of G and σi = k2
i − (ki mod 2). Observe that for rH(d)

k1,...,kd
, any subset

S of nodes, and any dimension i, it holds that |∂rHi S| = r · |∂Hi S|. Hence, BrH(S) =
|∂rH

1 S|
σ1

+ · · ·+ |∂rH
d S|
σd

= r(
|∂H

1 S|
σ1

+ · · · +
|∂H

d S|
σd

) = r ·BH(S).

Let us define now the lexicographic-order. Consider graph H(d)
k1,...,kd

, we say that
vertex x = (x1, x2, . . . , xd) precedes vertex y = (y1, y2, . . . , yd) in lexicographic-
order if there exists an index i ∈ [1, d] such that xi < yi and xj = yj for all j < i.
Azizoğlu and Eğecioğlu [3] proved the following result.

Theorem 1 ([3]). Let S be any subset of V (H) and S̄ the set of first |S| vertices of H
in lexicographic-order4, then BH(S̄) ≤ BH(S).

3 Bounds on the Bisection Width of Product Graphs
In this section we present general bounds on the bisection width of product graphs as
well as presenting two important parameters, the normalized congestion and the central
cut, which are used to obtain them. These bounds will be used in the upcoming sections
to find the bisection width of several instances of product graphs.

4 Observe that we have reversed the ordering of dimensions with respect to the original theorem
from Azizoğlu and Eğecioğlu.



Lower Bound We start by defining the normalized congestion of a graph. Let G
be a graph with n nodes. Then, an embedding of graph rKn onto G is a mapping
of the edges of rKn into paths in G. We define the congestion of G with multiplic-
ity r, denoted by mr(G), as the minimum (over all such embeddings) of the max-
imum number of embedded paths that contain an edge from G. To formally define
this concept, we first define the congestion of an edge e ∈ E(G) under the embed-
ding Mr of rKn onto G, denoted by cMr

(e), as cMr
(e) = |{e′ ∈ E(rKn) : e ∈

Mr(e
′)}|. (Observe that Mr(e

′) ⊆ E(G) is a path in G.) Then, the congestion mr(G)
is mr(G) = minMr∈E maxe∈E(G){cMr (e)}, where E is the set of all possible embed-
dings of rKn onto G. Then, we define the normalized congestion with multiplicity r of
G as βr(G) = mr(G)

σn
. We proceed to extend Theorem 1 to r-Hamming graphs.

Theorem 2. Consider a d-dimensional r-Hamming graph rH(d). Let S be any vertex
subset of V (rH(d)) and S̄ the set of first |S| vertices of rH(d) in lexicographic order,
then BrH(S̄) ≤ BrH(S).

Proof. We prove the theorem by contradiction. Assume that there is a set of vertices
X 6= S̄ such that |X| = |S̄| and BrH(S̄) > BrH(X). Then, applying the fact that
|∂rHi S| = r · |∂Hi S| to both X and S̄, we obtain that BH(S̄) = BrH(S̄)

r > BrH(X)
r =

BH(X), which contradicts Theorem 1 and proves the theorem.

Then, from the definition of BH(S̄), we obtain the following.

Theorem 3. Let G = G1 × . . . × Gd, where |V (Gi)| = ki and k1 ≥ k2 ≥ . . . ≥ kd.
Let βr(Gi) be the normalized congestion with multiplicity r of Gi (for any r), for all
i ∈ [1, d]. Consider any subset S ⊂ V (G) and the subset S̄ which contains the first |S|
vertices of G, in lexicographic order. Then, BrH(S̄) ≤

∑d
i=1 βr(Gi)|∂Gi S|

Corollary 1. Let G and βr(Gi) be defined as in Theorem 3. Consider any subset S ⊂
V (G) such that |S| = b |V (G)|

2 c. Then r
4Ψ(α) ≤

∑d
i=1 βr(Gi)|∂Gi S|. When βr(Gi) =

β for all i ∈ [1, d], this implies r
4βΨ(α) ≤ BW (G).

Upper Bound Having proved the lower bound on the bisection width, we follow
with the upper bound. We define first the central cut of a graph G. Consider a graph
G with n nodes, and a partition of V (G) into three sets S−, S+, and S, such that
|S−| = |S+| = bn2 c (observe that if n is even then S = ∅, otherwise |S| = 1). Then,
the central cut of G, denoted by CC(G), is

min
{S−,S+,S}

max{|∂GS−|, |∂GS+|}.

Observe that, for even n, the central cut is the bisection width. Now, we use the defini-
tion of central cut in the following theorem.

Theorem 4. Let G = G1 × . . .×Gd. Then, BW (G) ≤ maxi {CC(Gi)} · Ψ(α).



(a) The 4-vertex path and
clique

(b) The 5-vertex path and clique

Fig. 1. Paths and their possible cuts

Fig. 2. The 7-vertex complete binary tree and the 7-vertex clique, with their possible cuts

4 Bisection Width of Products of Paths and CBT
In this section we will obtain the bisection bandwidth of product graphs which result
from the Cartesian product of paths and Complete Binary Trees (CBT). We will present,
first, the different factor graphs we are using and the product graphs we are bisecting,
then, we will compute the congestion and central cut of these factor graphs and, finally,
calculate the bisection width of these product graphs.

Factor and Product Graphs Paths were defined in Section 2. The complete binary
tree of k vertices, denoted by CBTk , is a graph such that V (CBTk ) = {1, 2, . . . , k},
with k = 2j − 1 (j is the number of levels of the tree), and where E(CBTk ) = {(i, j) :
((j = 2i) ∨ (j = 2i + 1)) ∧ (i ∈ [1, 2j−1 − 1])}. Combining these factor graphs
through the Cartesian product, we obtain the product networks that we define below.
A d-dimensional mesh-connected trees and paths, denoted by MCTP

(d)
k1,k2,...,kd

, is the
Cartesian product of d graphs of k1, k2, . . . , kd vertices, respectively, where each factor
graph is a complete binary tree or a path. I.e., MCTP

(d)
k1,k2,...,kd

= Gk1 ×Gk2 × · · · ×
Gkd , where either Gki = CBTki or Gki = Pki . We also define the d-dimensional
mesh-connected trees [10], denoted by MCT

(d)
k1,k2,...,kd

as the graph MCTP
(d)
k1,k2,...,kd

in which all the factor graphs are complete binary trees. (Observe that the array is also
the special case of MCTP

(d)
k1,k2,...,kd

in which all the factor graphs are paths.)

Congestion and Central Cut of Paths and CBT The bisection widths of the afore-
mentioned product graphs can be calculated using the bounds defined in Section 3. To
do so, we need to compute first the values of the normalized congestion and central cut
of their factor graphs, that is, of a path and of a CBT.

The value of the congestion of a CBT is exactly the same as the congestion of a path
with an odd number of nodes. CBT share withe paths the property of having only one
possible routing between two nodes. As can be seen in Figures 1 and 2, the possible
cuts are similar. We can show that the normalized congestion of both paths or CBTs is
exactly βr(Pk) = βr(CBT k) = r

4 .
The value of the central cut of both the path and CBT can also be easily deduced

from Figures 1 and 2, being CC(Pk) = CC(CBT k) = 1.

Bounds on the Bisection Width of Products of CBTs and Paths We can compute
now the bisection width of a product of CBTs and paths from the congestion and the
central cut of the possible factor graphs, directly applying the results of Section 3.



(a) The 4-vertex ring
and clique

(b) The 5-vertex ring and
clique

(c) Central cut on a extended complete
binary tree

Fig. 3. Rings and extended complete binary tree possible cuts

Theorem 5. The bisection width of a d-dimensional mesh-connected trees and paths
MCTP

(d)
k1,k2,...,kd

is Ψ(α). Hence, the bisection width of the d-dimensional mesh-connected

trees MCT
(d)
k1,k2,...,kd

is BW (MCT (d)) = Ψ(d).

5 Products of Rings and Extended Trees
In this section we will obtain a result for the bisection bandwidth of the product graphs
which result from the Cartesian product of rings and extended complete binary trees.

Factor and Product Graphs The ring of k vertices, denoted by Rk, is a graph such
that V (Rk) = {0, 1, . . . , k − 1} and where E(Rk) = {(i, (i + 1) mod k) : i ∈
V (Rk)}. The extended complete binary tree (a.k.a. XT) of k vertices, denoted by Xk,
is a complete binary tree in which the leaves are connected as a path. More formally,
V (Xk) = V (CBTk ) and E(Xk) = E(CBTk ) ∪ {(i, i + 1) : i ∈ [2j−1, 2j − 2]}.
Combining these graphs as factor graphs in a Cartesian product, we can obtain the
three different kinds of product graphs. A d-dimensional mesh-connected extended
trees and rings, denoted by MCXR

(d)
k1,k2,...,kd

, is the Cartesian product of d graphs of
k1, k2, . . . , kd vertices, respectively, where each factor graph is an XT or a ring. I.e.,
MCXR

(d)
k1,k2,...,kd

= Gk1 ×Gk2 × · · · ×Gkd , where either Gki = Xki or Gki = Rki .

The d-dimensional torus, denoted by T (d)
k1,k2,...,kd

, is the Cartesian product of d rings of

k1, k2, . . . , kd vertices, respectively. I.e., T (d)
k1,k2,...,kd

= Rk1×Rk2×· · ·×Rkd . And, as
happened in Section 4 with MCT (d), we also define the d-dimensional mesh-connected
extended trees, denoted by MCX

(d)
k1,k2,...,kd

, a special case of MCXR
(d)
k1,k2,...,kd

in which

all factor graphs are XT. (The torus is the special case of MCXR
(d)
k1,k2,...,kd

in which all
factor graphs are rings.)

Congestion and Central Cut of Rings and XT The congestion and central cut of
both a ring and an XT are needed to apply the bounds obtained in Section 3. Similarly
to what happened with paths and CBTs, the congestion of rings and XT is the same. The
extended complete binary tree Xk has a Hamiltonian cycle [10], so we can find a ring
Rk contained onto it. Consequently, the congestion of an XT and a ring with the same
number of nodes will be the same. It can be shown that both normalized congestions
with multiplicity r = 2 is β2(Rk) = β2(Xk) = 1/4. Due to these similarities, central
cuts of both graphs are also going to be the same, as can be easily observed from Figures
3(a), 3(b) and 3(c), CC(Rk) = CC(Xk) = 2.

Bounds on the Bisection Width of Products of XT and Rings With the normalized
congestion and central cut of the different factor graphs, we can obtain the bisection
width of products of XT and rings.



Theorem 6. The bisection width of a d-dimensional mesh-connected extended trees
and rings MCXR

(d)
k1,k2,...,kd

is 2Ψ(α). Hence, the bisection width of the d-dimensional
torus T (d) is BW (T (d)) = 2Ψ(α) and the bisection width of the d-dimensional mesh-
connected extended trees MCX (d) is BW (MCX (d)) = 2Ψ(d).

6 BCube
We devote this section to obtain bounds on the bisection width of a d-dimensional
BCube [11]. BCube is different from the topologies considered in the previous sections
because it is obtained as the combination of basic networks formed by a collection
of k nodes (servers) connected by a switch. These factor networks are combined into
multidimensional networks in the same way product graphs are obtained from their
factor graphs. This allows us to study the BCube as an special instance of a product
network. The d-dimensional BCube can be obtained as the d dimensional product of
one-dimensional BCube networks, each one of k nodes.
Factor and Product Graphs We first define a Switched Star network and how a
d-dimensional BCube network is built from it. A Switched Star network of k nodes,
denoted by SSk, is composed of k nodes connected to a k-ports switch. It can be seen
as a complete graphKk where all the edges have been replaced by a switch. Combining
d copies of this network as factor networks of the Cartesian product, we obtain a d-
dimensional BCube. Hence, a d-dimensional BCube, denoted by BC

(d)
k , is the Cartesian

product of d SSk (the switches are not considered nodes for the Cartesian product).
I.e., BC (d)

k = SSk × SSk × · · · × SSk. BC (d)
k can also be seen as a d-dimensional

homogeneous array where all the edges in each path have been removed and replaced
by a switch where two nodes (u1, ..., ui, ..., ud) and (v1, ..., vi, ..., vd) are connected to
the same switch if and only if (ui 6= vi) and uj = vj for all j 6= i.

The main reason for obtaining the bisection width of a d-dimensional BCube is
to be able to bound its bisection bandwidth. However, as the d-dimensional BCube is
not a typical graph, the bisection width can have different forms depending on where
the communication bottleneck is located in a BCube network. We present two possible
models for SSk. The first one, Model A or star-like model, denoted by SSAk, consists of
k nodes connected one-to-one to a virtual node which represents the switch. The second
one, Model B or hyperlink model, denoted by SSBk, consists of k nodes connected by
a hyperlink5. While the two presented models are logically equivalent to a complete
graph, they have a different behavior from the traffic point of view. We show this with
two simple examples.

Let us consider that we have a SS 3 where the links have a speed of 100 Mbps
while the switch can switch at 1 Gbps. Under these conditions, the links become the
bottleneck of the network and, even when the switches would be able to provide a
bisection bandwidth of 1 Gbps, the effective bisection bandwidth is only of 200 Mbps
in both directions. Consider the opposite situation now, where the BCube switch only
supports 500 Mbps of internal traffic, while the links transmit at 1 Gbps. In this case,
the switches are the bottleneck of the network and the bisection bandwidth is only 500
Mbps, although the links would be able to support up to 2 Gbps.

5 This model is quite similar to the one proposed by Pan in [17].



(a) A 5-node star-like SS (b) Congestion of a 5-node
star-like SS
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(c) Central cut of a 5-node
star-like SS

Fig. 4. Model A of a 5-node switched star SSA5 and its congestion and central cut

(a) A 5-node hyperlink SS (b) Congestion of a 5-node
hyperlink SS

S
-

S
+

S

(c) Central cut of a 5-node
hyperlink SS

Fig. 5. Model B of a 5-node switched star SSB5 and its congestion and central cut

The first example illustrates an scenario where we would bisect the network by re-
moving the links that connect the servers to the switches, which corresponds to Model A.
On the other hand, what we find in the second example is a typical scenario for Model B,
where we would do better by removing entire switches when bisecting the network. In
particular, being s the switching capacity of a switch, and T the traffic supported by a
link, we will choose Model A when s ≥ bk2 c · 2T and Model B when s ≤ 2T . (Note
that this does not cover the whole spectrum of possible values of s, T , and k.)
Congestion and Central Cut of BCube We will compute now the congestion and
central cut of both models in order to be able to calculate the respective lower and upper
bounds. We start by the congestion and central cut of Model A. If we set r = 1, the
congestion of every link of the star is easily found6 to be mr(SSAk) = k− 1 as shown
in Figure 4(b). The central cut, which is also trivial, can be found in Figure 4(c). Both
will depend on whether the number of nodes k is even or odd.

Lemma 1. The normalized congestion of SSAk is βr(SSAk) = k−1
k2−b , and the central

cut is CC(SSAk) = k−b
2 , where b = k mod 2.

Having computed the congestion and the central cut for Model A, we will compute
them now for Model B. If we set r = 1 there will be only one edge to be removed,
the congestion of the graph will be total amount of edges of its equivalent Kk, i. e.,
mr(SSBk) = k(k−1)

2 . The central cut is also easily computed, as there is only one
hyperlink. Both mr(SSBk) and CC(SSBk) are shown in Figure 5.

Lemma 2. The normalized congestion of SSBk is βr(SSBk) = k−1
2(k2−b) , where b =

k mod 2, and the central cut is CC(SSBk) = 1.

Bounds on the Bisection Width of BCube Having computed the congestion and
central cut of both models, we can calculate the lower and upper bounds on the bisection
width of each one of them. We will start by the lower and upper bounds on the bisection
width of Model A and, then, we will calculate both bounds for Model B. We first present
the following lemma for the lower bound on the bisection width of a Model A BCube.

6 Note that in the computation of the congestion, the switch is not considered a node of the
graph.



Lemma 3. The bisection width of a Model A d-dimensional BCube, BCA(d)
k , is lower

bounded by kd+1

4(k−1) if k is even, and by k+1
4

kd−1
k−1 if k is odd.

After presenting the lower bound on the bisection width of a Model A d-dimensional
BCube, we follow with the upper bound.

Lemma 4. The bisection width of a Model A d-dimensional BCube, BCA(d)
k , is upper

bounded by kd

2 if k is even, and by kd−1
2 if k is odd.

Now, from the combination of Lemma 3 and Lemma 4 we can state Theorem 7:

Theorem 7. The value of the bisection width of a Model A d-dimensional BCube,
BCA

(d)
k , is in the interval [ kd+1

4(k−1) ,
kd

2 ] if k is even, and in the interval [k+1
4

kd−1
k−1 ,

kd−1
2 ]

if k is odd.

Corollary 2. The bisection bandwidth of a Model A d-dimensional BCube satisfies,

BBW (BCA
(d)
k ) ∈

{
[2T kd+1

4(k−1) , 2T
kd

2 ] if k is even

[2T k+1
4

kd−1
k−1 , 2T

kd−1
2 ] if k is odd.

Let us calculate now the bounds of a Model B d-dimensional BCube. As we did with
Model A, we present the following two lemmas for both the lower and upper bounds.

Lemma 5. The bisection width of a Model B d-dimensional BCube, BCB (d)
k , is lower

bounded by kd

2(k−1) if k is even, and by k+1
2k

kd−1
k−1 if k is odd.

Lemma 6. The bisection width of a Model B d-dimensional BCube, BCB (d)
k , is upper

bounded by kd−1
k−1 .

Combining the previous lemmas we can state the following theorem.

Theorem 8. The value of the bisection width of a Model B d-dimensional BCube,
BCB

(d)
k , is in the interval [ kd

2(k−1) ,
1−kd
1−k ] if k is even, and in the interval [k+1

2k
kd−1
k−1 ,

kd−1
k−1 ]

if k is odd.

Corollary 3. The bisection bandwidth of a Model B d-dimensional BCube satisfies,

BBW (BCB
(d)
k ) ∈

{
[s kd

2(k−1) , s
1−kd
1−k ] if k is even

[sk+1
2k

kd−1
k−1 , s

kd−1
k−1 ] if k is odd.
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