431 research outputs found

    Methodology to Solve Multi-Dimentional Sphere Packing Problems

    Get PDF
    This paper discusses the problem of optimally packing spheres of various dimensions into containers of arbitrary geometrical shapes. According to the international classification, this problem belongs to Sphere Packing Problems (SPPs). The aim of this work is to create an integrated methodology for solving SPPs.В статті розглядається задача оптимального розміщення куль різної розмірності в контейнерах довільних геометричних форм. Згідно з міжнародною класифікацією ця задача належить до класу SPP (Sphere Packing Problems). Метою даної роботи є створення єдиної методології розв’язання задач SPP.В статье рассматривается задача оптимального размещения шаров различной размерности в контейнерах произвольных геометрических форм. Согласно международной классификации эта задача относится к классу SPP (Sphere Packing Problems). Целью данной работы является создание единой методологии решения задач SPP

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298

    Mobile disks in hyperbolic space and minimization of conformal capacity

    Full text link
    Our focus is to study constellations of disjoint disks in the hyperbolic space, the unit disk equipped with the hyperbolic metric. Each constellation corresponds to a set EE which is the union of m>2m>2 disks with hyperbolic radii rj>0,j=1,...,mr_j>0, j=1,...,m. The centers of the disks are not fixed and hence individual disks of the constellation are allowed to move under the constraints that they do not overlap and their hyperbolic radii remain invariant. Our main objective is to find computational lower bounds for the conformal capacity of a given constellation. The capacity depends on the centers and radii in a very complicated way even in the simplest cases when m=3m=3 or m=4m=4. In the absence of analytic methods our work is based on numerical simulations using two different numerical methods, the boundary integral equation method and the hphp-FEM method, resp. Our simulations combine capacity computation with minimization methods and produce extremal cases where the disks of the constellation are grouped next to each other. This resembles the behavior of animal colonies minimizing heat flow in arctic areas

    Axisymmetry in Mechanical Engineering

    Get PDF
    The reprint is devoted to the phenomena associated with exact or approximate axial symmetry in different areas of technical physics and mechanical engineering science. How can the symmetry of the problem be used most efficiently for its analysis? Why is the symmetry broken or why is it still approximately retained? These and other questions are discussed based on systems from different fields of engineering

    A Combinatorial Approach to Nonlocality and Contextuality

    Full text link
    So far, most of the literature on (quantum) contextuality and the Kochen-Specker theorem seems either to concern particular examples of contextuality, or be considered as quantum logic. Here, we develop a general formalism for contextuality scenarios based on the combinatorics of hypergraphs which significantly refines a similar recent approach by Cabello, Severini and Winter (CSW). In contrast to CSW, we explicitly include the normalization of probabilities, which gives us a much finer control over the various sets of probabilistic models like classical, quantum and generalized probabilistic. In particular, our framework specializes to (quantum) nonlocality in the case of Bell scenarios, which arise very naturally from a certain product of contextuality scenarios due to Foulis and Randall. In the spirit of CSW, we find close relationships to several graph invariants. The recently proposed Local Orthogonality principle turns out to be a special case of a general principle for contextuality scenarios related to the Shannon capacity of graphs. Our results imply that it is strictly dominated by a low level of the Navascu\'es-Pironio-Ac\'in hierarchy of semidefinite programs, which we also apply to contextuality scenarios. We derive a wealth of results in our framework, many of these relating to quantum and supraquantum contextuality and nonlocality, and state numerous open problems. For example, we show that the set of quantum models on a contextuality scenario can in general not be characterized in terms of a graph invariant. In terms of graph theory, our main result is this: there exist two graphs G1G_1 and G2G_2 with the properties \begin{align*} \alpha(G_1) &= \Theta(G_1), & \alpha(G_2) &= \vartheta(G_2), \\[6pt] \Theta(G_1\boxtimes G_2) & > \Theta(G_1)\cdot \Theta(G_2),& \Theta(G_1 + G_2) & > \Theta(G_1) + \Theta(G_2). \end{align*}Comment: minor revision, same results as in v2, to appear in Comm. Math. Phy
    corecore