22 research outputs found

    Extrapolation-based implicit-explicit general linear methods

    Full text link
    For many systems of differential equations modeling problems in science and engineering, there are natural splittings of the right hand side into two parts, one non-stiff or mildly stiff, and the other one stiff. For such systems implicit-explicit (IMEX) integration combines an explicit scheme for the non-stiff part with an implicit scheme for the stiff part. In a recent series of papers two of the authors (Sandu and Zhang) have developed IMEX GLMs, a family of implicit-explicit schemes based on general linear methods. It has been shown that, due to their high stage order, IMEX GLMs require no additional coupling order conditions, and are not marred by order reduction. This work develops a new extrapolation-based approach to construct practical IMEX GLM pairs of high order. We look for methods with large absolute stability region, assuming that the implicit part of the method is A- or L-stable. We provide examples of IMEX GLMs with optimal stability properties. Their application to a two dimensional test problem confirms the theoretical findings

    Extrapolation-Based Implicit-Explicit Peer Methods with Optimised Stability Regions

    Get PDF
    In this paper we investigate a new class of implicit-explicit (IMEX) two-step methods of Peer type for systems of ordinary differential equations with both non-stiff and stiff parts included in the source term. An extrapolation approach based on already computed stage values is applied to construct IMEX methods with favourable stability properties. Optimised IMEX-Peer methods of order p = 2, 3, 4, are given as result of a search algorithm carefully designed to balance the size of the stability regions and the extrapolation errors. Numerical experiments and a comparison to other implicit-explicit methods are included.Comment: 21 pages, 6 figure

    Extrapolation-Based Super-Convergent Implicit-Explicit Peer Methods with A-stable Implicit Part

    Get PDF
    In this paper, we extend the implicit-explicit (IMEX) methods of Peer type recently developed in [Lang, Hundsdorfer, J. Comp. Phys., 337:203--215, 2017] to a broader class of two-step methods that allow the construction of super-convergent IMEX-Peer methods with A-stable implicit part. IMEX schemes combine the necessary stability of implicit and low computational costs of explicit methods to efficiently solve systems of ordinary differential equations with both stiff and non-stiff parts included in the source term. To construct super-convergent IMEX-Peer methods with favourable stability properties, we derive necessary and sufficient conditions on the coefficient matrices and apply an extrapolation approach based on already computed stage values. Optimised super-convergent IMEX-Peer methods of order s+1 for s=2,3,4 stages are given as result of a search algorithm carefully designed to balance the size of the stability regions and the extrapolation errors. Numerical experiments and a comparison to other IMEX-Peer methods are included.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with arXiv:1610.0051

    Fourth-order time-stepping for stiff PDEs on the sphere

    Full text link
    We present in this paper algorithms for solving stiff PDEs on the unit sphere with spectral accuracy in space and fourth-order accuracy in time. These are based on a variant of the double Fourier sphere method in coefficient space with multiplication matrices that differ from the usual ones, and implicit-explicit time-stepping schemes. Operating in coefficient space with these new matrices allows one to use a sparse direct solver, avoids the coordinate singularity and maintains smoothness at the poles, while implicit-explicit schemes circumvent severe restrictions on the time-steps due to stiffness. A comparison is made against exponential integrators and it is found that implicit-explicit schemes perform best. Implementations in MATLAB and Chebfun make it possible to compute the solution of many PDEs to high accuracy in a very convenient fashion

    Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part

    Full text link
    For many systems of differential equations modeling problems in science and engineering, there are often natural splittings of the right hand side into two parts, one of which is non-stiff or mildly stiff, and the other part is stiff. Such systems can be efficiently treated by a class of implicit-explicit (IMEX) diagonally implicit multistage integration methods (DIMSIMs), where the stiff part is integrated by implicit formula, and the non-stiff part is integrated by an explicit formula. We will construct methods where the explicit part has strong stability preserving (SSP) property, and the implicit part of the method is AA-, or LL-stable. We will also investigate stability of these methods when the implicit and explicit parts interact with each other. To be more precise, we will monitor the size of the region of absolute stability of the IMEX scheme, assuming that the implicit part of the method is AA-, or LL-stable. Finally we furnish examples of SSP IMEX DIMSIMs up to the order four with good stability properties

    Extrapolation-Based Implicit-Explicit Peer Methods with Optimised Stability Regions

    Get PDF
    In this paper we investigate an new class of implicit-explicit two-step methods of Peer type for systems of ordinary differential equations with both non-stiff and stiff parts included in the source term. An extrapolation approach based on already computed stage values with equally high consistency order is applied to construct such methods with strong stability properties. Optimised implicit-explicit Peer methods of order p=2,3,4, are given as result of a search algorithm carefully designed to balance the size of the stability regions and the extrapolation errors. Numerical experiments and a comparison to other implicit-explicit methods are included
    corecore