3 research outputs found

    Extraction of Temporal Network Structures from Graph-based Signals

    Get PDF
    International audienceA new framework to track the structure of temporal networks with a signal processing approach is introduced. The method is based on the duality between static networks and signals, obtained using a multidimensional scaling technique, that makes possible the study of the network structure from frequency patterns of the corresponding signals. In this paper, we propose an approach to identify structures in temporal networks by extracting the most significant frequency patterns and their activation coefficients over time, using nonnegative matrix factorization of the temporal spectra. The framework, inspired by audio decomposition, allows transforming back these frequency patterns into networks, to highlight the evolution of the underlying structure of the network over time. The effectiveness of the method is first evidenced on a synthetic example, prior being used to study a temporal network of face-to-face contacts. The extracted sub-networks highlight significant structures decomposed on time intervals that validates the relevance of the approach on real-world data

    A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence

    Get PDF
    Nonnegative Matrix Factorization (NMF) has attracted a great deal of attention as an effective technique for dimensionality reduction of large-scale nonnegative data. Given a nonnegative matrix, NMF aims to obtain two low-rank nonnegative factor matrices by solving a constrained optimization problem. The Hierarchical Alternating Least Squares (HALS) algorithm is a well-known and widely-used iterative method for solving such optimization problems. However, the original update rule used in the HALS algorithm is not well defined. In this paper, we propose a novel well-defined update rule of the HALS algorithm, and prove its global convergence in the sense of Zangwill. Unlike conventional globally-convergent update rules, the proposed one allows variables to take the value of zero and hence can obtain sparse factor matrices. We also present two stopping conditions that guarantee the finite termination of the HALS algorithm. The practical usefulness of the proposed update rule is shown through experiments using real-world datasets
    corecore