3 research outputs found

    Extracting Data-Level Parallelism in High-Level Synthesis for Reconfigurable Architectures

    Get PDF
    High-Level Synthesis (HLS) tools are a set of algorithms that allow programmers to obtain implementable Hardware Description Language (HDL) code from specifications written high-level, sequential languages such as C, C++, or Java. HLS has allowed programmers to code in their preferred language while still obtaining all the benefits hardware acceleration has to offer without them needing to be intimately familiar with the hardware platform of the accelerator. In this work we summarize and expand upon several of our approaches to improve the automatic memory banking capabilities of HLS tools targeting reconfigurable architectures, namely Field-Programmable Gate Arrays or FPGA\u27s. We explored several approaches to automatically find the optimal partition factor and a usable banking scheme for stencil kernels including a tessellation based approach using multiple families of hyperplanes to do the partitioning which was able to find a better banking factor than current state-of-the-art methods and a graph theory methodology that allowed us to mathematically prove the optimality of our banking solutions. For non-stencil kernels we relaxed some of the conditions in our graph-based model to propose a best-effort solution to arbitrarily reduce memory access conflicts (simultaneous accesses to the same memory bank). We also proposed a non-linear transformation using prime factorization to convert a small subset of non-stencil kernels into stencil memory accesses, allowing us to use all previous work in memory partition to them. Our approaches were able to obtain better results than commercial tools and state-of-the-art algorithms in terms of reduced resource utilization and increased frequency of operation. We were also able to obtain better partition factors for some stencil kernels and usable baking schemes for non-stencil kernels with better performance than any applicable existing algorithm

    Extracting Data Parallelism In Non-Stencil Kernel Computing By Optimally Coloring Folded Memory Conflict Graph

    No full text
    Irregular memory access pattern in non-stencil kernel computing renders the well-known hyperplane-[1], lattice-[2] , or tessellationbased [3] HLS techniques ineffective. We develop an elegant yet effective technique that synthesizes memory-optimal architecture from high level software code in order to maximize applicationspecific data parallelism. Our basic idea is to exploit graph structures embedded in data access pattern and computation structure in order to perform the memory banking that maximizes parallel memory accesses while conserving both hardware and energy consumption. Specifically, we priority color a weighted conflict graph generated from folding the fundamental conflict graph to maximize memory conflict reduction. Most interestingly, our graph-based methodology enables a straightforward tradeoffbetween the number of memory banks and minimizing memory conflicts. We empirically test our methodology with Vivado HLx 2015.4 on a standard Kintex-7 device for six benchmark computing kernels by measuring conflict reduction. In particular, our approach only require 9.563 LUT, 3.23 FF, 2.53 BRAM, and 11.333 DSP of the total available hardware resource to obtain a mapping function that achieves a 903 conflict reduction on a modified forward Gaussian elimination Kernel with 4 simultaneous memory accesses

    The Sixth Copper Mountain Conference on Multigrid Methods, part 1

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on 4-9 Apr. 1993, at Copper Mountain, CO. This book is a collection of many of the papers presented at the conference and as such represents the conference proceedings. NASA LaRC graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth
    corecore