
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2020

Extracting Data-Level Parallelism in High-Level Synthesis for Extracting Data-Level Parallelism in High-Level Synthesis for

Reconfigurable Architectures Reconfigurable Architectures

Juan Andres Escobedo Contreras
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Escobedo Contreras, Juan Andres, "Extracting Data-Level Parallelism in High-Level Synthesis for
Reconfigurable Architectures" (2020). Electronic Theses and Dissertations, 2020-. 41.
https://stars.library.ucf.edu/etd2020/41

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/328102285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd2020%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/41?utm_source=stars.library.ucf.edu%2Fetd2020%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

EXTRACTING DATA-LEVEL PARALLELISM IN HIGH-LEVEL SYNTHESIS FOR

RECONFIGURABLE ARCHITECTURES

by

JUAN ESCOBEDO

M.S. University of Central Florida, 2019

B.S. Central University of Venezuela, 2013

A dissertation submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring Term

2020

Major Professor: Mingjie Lin

© 2020 Juan Escobedo

ii

ABSTRACT

High-Level Synthesis (HLS) tools are a set of algorithms that allow programmers to obtain im-

plementable Hardware Description Language (HDL) code from specifications written high-level,

sequential languages such as C, C++, or Java. HLS has allowed programmers to code in their

preferred language while still obtaining all the benefits hardware acceleration has to offer without

them needing to be intimately familiar with the hardware platform of the accelerator.

In this work we summarize and expand upon several of our approaches to improve the automatic

memory banking capabilities of HLS tools targeting reconfigurable architectures, namely Field-

Programmable Gate Arrays or FPGA’s. We explored several approaches to automatically find

the optimal partition factor and a usable banking scheme for stencil kernels including a tessellation

based approach using multiple families of hyperplanes to do the partitioning which was able to find

a better banking factor than current state-of-the-art methods and a graph theory methodology that

allowed us to mathematically prove the optimality of our banking solutions. For non-stencil kernels

we relaxed some of the conditions in our graph-based model to propose a best-effort solution to

arbitrarily reduce memory access conflicts (simultaneous accesses to the same memory bank). We

also proposed a non-linear transformation using prime factorization to convert a small subset of

non-stencil kernels into stencil memory accesses, allowing us to use all previous work in memory

partition to them.

Our approaches were able to obtain better results than commercial tools and state-of-the-art al-

gorithms in terms of reduced resource utilization and increased frequency of operation. We were

also able to obtain better partition factors for some stencil kernels and usable baking schemes for

non-stencil kernels with better performance than any applicable existing algorithm.

iii

To my mother and my wife. Without your unconditional support, infinite love, and heavenly

patience none of this would have been possible.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Mingjie Lin. Your motivation, support, and guidance were

instrumental in this achievement. Your unwavering faith in my skills and abilities kept me inspired

to push forward even in the hardest of times.

v

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xix

CHAPTER 1: INTRODUCTION . 1

Problem background . 1

Motivation . 6

Contributions . 13

Dissertation Outline . 15

CHAPTER 2: LITERATURE REVIEW . 17

CHAPTER 3: TESSELLATION BASED APPROACH FOR OPTIMAL MEMORY BANK-

ING IN STENCILS . 26

Motivating Example . 26

Problem formulation . 28

Motivational observation . 32

Overall Methodology . 36

vi

Block size calculation . 38

Tile construction . 42

Tessellation . 43

Super-tile construction . 47

Intra-Bank Offset . 51

Results and Analysis . 54

CHAPTER 4: GRAPH BASED APPROACH FOR OPTIMAL MEMORY BANKING IN

STENCILS . 60

Motivational example . 60

Problem Formulation and Overall Solving Strategy . 64

Proof of Algorithmatic Optimality and Hardware Implementation Efficiency 74

Minimum Memory Bank Number . 74

Graph Repeatability . 75

Data Reuse . 83

Modeling Multi-port memories . 88

Results and Analysis . 92

CHAPTER 5: GRAPH BASED APPROACH FOR MEMORY BANKING IN NON-STENCILS

vii

100

Motivational example . 100

Problem Definition . 105

Conflict minimization . 109

Methodology . 117

Results . 122

CHAPTER 6: NON-LINEAR TRANSFORMATION BASED APPROACH FOR OPTIMAL

MEMORY BANKING IN QUASI-STENCILS 132

Motivational example . 133

Overall Methodology . 136

Quasi-stencil: Definition and Criteria . 136

Generalizing Quasi-Stencil . 138

Single intersect point at ϕk = 0, i 6= 0 . 139

Single intersect point at ϕk 6= 0 . 139

Multiple intersect points with integer time delay 139

Prime Factorization Space . 139

Transformed data domain . 142

viii

Overhead Reduction . 144

Implementation . 146

Experimental Setup and Results . 147

CHAPTER 7: CONCLUSION AND FUTURE WORK 154

Conclusion . 154

Future Work . 155

LIST OF REFERENCES . 157

ix

LIST OF FIGURES

Figure 1.1: Performance upper bound using the Roofline model. Note the operation on

the left is bound the available memory bandwidth while the operation on

the right is only limited by the computing power available. By Giu.natale

- Own work, CC BY-SA 4.0. https://commons.wikimedia.org/w/index.

php?curid=49641351 . 2

Figure 1.2: Example of Edge Detection. Original image (left) and filtered image using

a Sobel Edge Detection Kernel (right). By Shaddowffax - Own work, CC

BY-SA 4.0, https://commons.wikimedia.org/w/index. php?curid=45561476 8

Figure 1.3: (a) Original grayscale image with superimposed 4 × 5 grid used as input

of the Sobel edge detection kernel. (b) First iteration of the kernel. Light

gray, data elements accessed from the input image (Left). Element in the

output image where we store the gradient computation after applying the

kernel (Right). (c) Second iteration of the kernel. Light gray, data elements

accessed from the input image (Left). Element in the output image where

we store the gradient computation after applying the kernel (Right). (d)

Output image after applying the kernel to the whole image 9

Figure 1.4: Example of a traditional memory subsystem 10

Figure 1.5: Partitioned data space. Each number corresponds to a bank. Elements with

the same number are assigned to the same bank. First (Left) and second

(Right) iterations of the Sobel Edge Detection Kernel. 11

x

Figure 1.6: Example of a memory subsystem with several banks to allow conflict-free,

parallel memory access. 13

Figure 3.1: (a) Kernel Code. (b) Memory Access Pattern. (c) Native Linear Shifting.

(d) Tessellation-Based Solution. ©2016 IEEE 27

Figure 3.2: (a) Tessellation Example. (b) Resulting Memory Mapping. ©2016 IEEE . 33

Figure 3.3: (a) Tessellation Example. (b) Embedded Mesh within a Tessellation. ©2016

IEEE . 35

Figure 3.4: Design Flow . 37

Figure 3.5: Different access patterns and their final tile shape. The blue outline rep-

resents the block. Dots are the center of a cell: original memory access

are red, extra bank in orange. Green parallelepipeds represent loop un-

rolling/tilting. 39

Figure 3.6: Block size calculation . 41

Figure 3.7: Algorithm for Tile Formation. 42

Figure 3.8: (a) 4 non-overlapping instances of the memory access map and embedded

parallelogram. (b) 4 non-overlapping instances of the memory access map

forming the smallest parallelogram. (c) Updated tile with extra block. (d)

Final tessellation with new tile. ©2016 IEEE 44

Figure 3.9: In blue, access outline. In red, exclusion zone outline. Matching numbers

of same color are symmetrically opposite from center 46

xi

Figure 3.10: (a) base vectors and their complement. (b) Smallest horizontal vector made

from a linear combination of base vectors. (c) Smallest vertical vector

made from a linear combination of base vectors. (d) Super-tile 49

Figure 3.11: (a) Bank mapping memory MemB . (b) Tessellation for an m × n matrix

using a 4× 6 super-tile. ©2016 IEEE . 50

Figure 3.12: (a)Tessellation for an m x n matrix using a 4 x 6 super-tile. (b)MemO

offsets. ©2017 IEEE . 53

Figure 3.13: Template of transformed code. ©2016 IEEE 54

Figure 3.14: Test kernels used: (a) Denoise. (b) Bicubic. (c) Deconv. (d) Motion-LH.

(e) Sobel. ©2016 IEEE . 55

Figure 3.15: Diagram for Tessellation-based method 58

Figure 4.1: (a) Code snippet for a motivational example. (b) 12-point example stencil.

[1] DOI 10.1145/3174243.3174251 . 60

Figure 4.2: Coloring of the data space. Black lines indicate where the pattern repeats.

Light gray areas are instances of the stencil. [1] DOI 10.1145/3174243.3174251 62

Figure 4.3: Sample hyper-plane families showing at least one conflict. [1] DOI 10.1145

3174243.3174251 . 63

Figure 4.4: A small portion of the entire memory access conflict graph generated by

the stencil in Fig. 4.1. [1] DOI 10.1145/3174243.3174251 67

xii

Figure 4.5: (a) Kernel code snippet. (b) Stencil S. (c) Extended stencil graph (ESG(S)).

(d) Optimal coloring ESG(S). A, B, and C denote different colors. [1]

DOI 10.1145/3174243.3174251 . 69

Figure 4.6: (a) A 5-node clique K5. (b) A perfect graph of 9 nodes. [1] DOI 10.1145/

3174243.3174251 . 70

Figure 4.7: Flow diagram of our algorithm. [1] DOI 10.1145/3174243.3174251 72

Figure 4.8: (a) An 3-point stencil example S. (b) Its extended stencil ES(S). (c) Its

extended stencil graph ESG(S). (d) Optimal coloring of ESG(S). [1]

DOI 10.1145/3174243.3174251 . 73

Figure 4.9: (a) Instance of the ESG with two cliques colored.(b) Instance of the gluing

ESG (ESG’) with the coloring reversed.(c) continuous sequence ESG-

ESG’ESG- with repeated coloring. [1] DOI 10.1145/3174243.3174251 . 77

Figure 4.10: (a) An example stencil. (b) Extended stencil graph of the sample stencil.

(c) ESG with valid coloring for one clique. (d) Glue extension graph

ESG′ with two cliques colored. (e) ESG with valid colorings for two

cliques (f) Glued chain ESG − ESG′ − ESG for the sample stencil. [1]

DOI 10.1145/3174243.3174251 . 79

Figure 4.11: Stencil (black) and the circumscribing square (blue). Nodes in gray are

potential candidates to be added. [1] DOI 10.1145/3174243.3174251 . . . 80

Figure 4.12: Node addition algorithm. [1] DOI 10.1145/3174243.3174251 81

Figure 4.13: (a) Stencil clique. (b) DRG for the stencil where n is the problem size in

the inner most loop. 84

xiii

Figure 4.14: (a) Original stencil. (b) DRG. (c) DRG after edge reduction. In black

are the edges independent of the the problem size. (d) Simplified stencil.

Nodes without an incoming edge. (e) ES for the reduced stencil. (f) Corre-

sponding ESG. (g) Colored ESG. Note we now only need 3 colors instead

of the original 5. 85

Figure 4.15: Flow diagram of our algorithm. 86

Figure 4.16: Coloring of the data space. Dashed black lines indicate where the pattern

repeats. Gray areas are instances of the stencil. Light gray are memory

accesses taken care of by the data reuse scheme. Dark gray need to be

accessed in parallel each clock cycle . 87

Figure 4.17: (a) Original repeating coloring for the 12-point stencil with 36 elements in

a 6x6 square and 12 banks. (b) Repeating coloring for the 12-point stencil

with data reuse using only 4 elements in a 1x4 rectangle and 4 banks 88

Figure 4.18: (a) Original 3-element stencil forming a complete graph. (b) Modified

stencil removing up to d edges from each node, with d=1. (c) ESG of the

modified stencil. (d) Colored induced subgraph of the ISG considering

only the nodes connected to the picot point. (e) Colored full ESG. (f)

Linkage of several ESG to cover the entire data domain with the defective

coloring . 91

Figure 4.19: Template of transformed code. [1] DOI 10.1145/3174243.3174251 92

Figure 4.20: (a)Arrangement of the repeating intra bank offset rectangle of for an m

x n matrix using a 4 x 6 rectangle. (b)MemO offsets. [1] DOI 10.1145/

3174243.3174251 . 96

xiv

Figure 5.1: (a) Modified forward Gauss-Jordan elimination kernel. (b) Accessed el-

ements on iteration (i,j,k) = (0,1,1). (c) Accessed elements on iteration

(i,j,k)=(0,1,2). (d) Accessed elements on iteration (i,j,k) = (0,2,2). [2] DOI

10.1145/ 3195970.3196088 . 101

Figure 5.2: (a) Conflict graph for iterations (i,j,k)=(0,1,1) in blue, (i,j,k)=(0,2,2) in pur-

ple, and (i,j,k)=(2,3,3) in green. (b) Overlapping of 2x2 regions of the 4x4

problem. (c) Final weighted conflict graph for the iterations under consid-

eration. [2] DOI 10.1145/3195970.3196088 103

Figure 5.3: Coloring of the resulting conflict graph (top) and corresponding intra-

supertile [bank, address] pair (bottom) for 1 bank (a), 2 banks (b), 3 banks

(c), and 4 banks (d). [2] DOI 10.1145/ 3195970.3196088 104

Figure 5.4: Conflict ratio for a supertile of size 2x2 and a problem of size of dimen-

sions 256x256 (top) and 4x4 (bottom) for 1,2,3, and 4 banks. [2] DOI

10.1145/ 3195970.3196088 . 105

Figure 5.5: Full conflict graph for the GE kernel on a 5x5 matrix. [2] DOI 10.1145/

3195970.3196088 . 111

Figure 5.6: Conflict graph of a 3x3 supertile for the GE kernel on a 5x5 matrix. [2]

DOI 10.1145/3195970.3196088 . 113

Figure 5.7: Edge removal algorithm. [2] DOI 10.1145/3195970.3196088 115

xv

Figure 5.8: Matlab code for: (a) Row/Column (RC), (b) Double Row/ Double (DRDC),

(c) Combined Gauss-Jordan forward elimination (GE), (d) LU factoriza-

tion (LU), (e) Cholesky decomposition (CHO), (f) QR decomposition (QR).

[2] DOI 10.1145/3195970.3196088 . 119

Figure 5.9: Code template for the mapping function of the GE with a supertile of size

8x8. [2] DOI 10.1145/3195970.3196088 121

Figure 5.10: Conflict ratio for the GE kernel on a problem of size 128x128 and a super-

tile of size: 8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/ 3195970.

3196088 . 125

Figure 5.11: Conflict ratio for the GE kernel on a problem of size 128x128 and a super-

tile of size: 8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/ 3195970.

3196088 . 126

Figure 5.12: Conflict ratio for the Cholesky kernel on a problem of size 128x128 and

a supertile of size: 8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/

3195970. 3196088 . 126

Figure 5.13: Conflict ratio for the QR kernel on a problem of size 128x128 and a super-

tile of size: 8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/ 3195970.

3196088 . 127

Figure 5.14: Conflict ratio for the RC kernel on problem of size 128x128 and a supertile

of size: 8x8, 16x16, 32,x32, and 128x128/ [2] DOI 10.1145/ 3195970.

3196088 . 127

xvi

Figure 5.15: Conflict ratio for the DRDC kernel on a problem of size 128x128 and

a supertile of size: 8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/

3195970. 3196088 . 128

Figure 6.1: (a) Memory access geometry for 4 distinct iterations in the original space:

(i,j)=[(1,1),(2,3),(3,1),(4,4)]. Note the geometry changes. (b) Memory par-

tition with 8 banks using the GMP method from [3]. Number of banks is

proportional to the problem size. ©2019 IEEE 133

Figure 6.2: (a) Memory access geometry for 4 distinct iterations in our transformed

domain: (i,j)=[(1,1),(2,3),(3,1),(4,4)]. Note the constant shape. (b) Mem-

ory partition with 4 banks using the ESG method in [1]. Number of banks

is independent of problem size. Work in [3] given the same number of

banks but different layout. ©2019 IEEE 134

Figure 6.3: Circuit diagram of our implementation. After our layer of indirection rep-

resented by a LUT, the circuit schematic remains the same as traditional

banking schemes. ©2019 IEEE . 135

Figure 6.4: Memory accesses formed by the lines ϕ11 :i(blue) and ϕ12=2*i(red) in the

plane ID,DD with as single intersection point at the origin. ©2019 IEEE . . 137

Figure 6.5: (a) Single intersect at ϕ = 0, i 6= 0. ϕ11 : i − 1(blue) and ϕ12 = 2(i − 1)

(red). (b) Single intersect at ϕ 6= 0, i 6= 0. ϕ11 : i(blue) and ϕ12 = 2i− 1

(red). (c) Multiple intersect, integer delay. ϕ11 : i−1 (blue), ϕ12 = 2(i−1)

(red), and ϕ12 = 3(i− 2) (green). ©2019 IEEE 138

xvii

Figure 6.6: Partial PFS for the first 3 primes 2, 3, and 5. We can represent numbers

from 1-6 without gaps. ©2019 IEEE . 141

Figure 6.7: (a) Linearized PFS for the case where memory locations intersect at the

origin. (b) Extended linearized PFS for the case where memory locations

intersect at (x, 0), x > 0. (c) Shifted linearized space for the case where

memory locations at (x, y), x, y > 0. For this example y = 3. ©2019 IEEE 143

Figure 6.8: (a) Full Linearized PFS for the motivational example. Gray cells are mem-

ory locations that are never accessed for i,j≤5. (b) Full Linearized PFS

with overlapped region of repeated banking. (c) Pruned linearized PFS.

©2019 IEEE . 145

Figure 6.9: (a),(b) and (g) Code for the Base case. (c), (d), (h) Code for the Single In-

tersect, Non-Zero case. (e), (f) (i) Code for the Multiple Intersect. ©2019

IEEE . 148

xviii

LIST OF TABLES

Table 3.1: Table of symbols . 29

Table 3.2: Resource utilization and clock period comparison 56

Table 3.3: Memory waste comparison . 57

Table 4.1: Resource utilization and clock period comparison. [1] DOI 10.1145/ 3174243.

3174251 . 94

Table 4.2: Memory waste comparison. [1] DOI 10.1145/3174243.3174251 98

Table 5.1: Number of colors using approximate coloring to ensure no inter-node con-

flict (Left) and ratio of intra-node, self-conflict, vs total conflicts (Right)) for

a particular stencil kernel with tile size X × Y. [2] DOI 10.1145/ 3195970.

3196088 . 123

Table 5.2: Number of colors using approximate coloring to ensure no inter-node con-

flict (Left) and ratio of intra-node, self-conflict, vs total conflicts (Right))

for a particular non-stencil kernel with tile size X × Y. [2] DOI 10.1145/

3195970.3196088 . 124

Table 5.3: Resource utilization for the GE kernel, problem size 128, and different su-

pertile sizes. [2] DOI 10.1145/3195970.3196088 130

Table 6.1: Results for all test cases . 150

xix

Table 6.2: Comprasion of partition factors . 152

xx

CHAPTER 1: INTRODUCTION

Problem background

Processing power has been increasing at a faster rate than memory access speeds and available

bandwidth [4, 5]. This means the memory subsystems become a bottleneck in most architectures

where the powerful and data-hungry processing units have to wait to get the information they need

to operate which wastes valuable compute time and energy.

One model used to easily visualize the limitations set by the available memory bandwidth and

compute power is the Roofline model [6,7] which plots a metric of performance (usually Giga/Tera

Floating Point Operations per second or GFLOPS/TFLOPS) vs. the Operational intensity, or the

number of arithmetic operations that can be performed on a single byte of data.

1

Figure 1.1: Performance upper bound using the Roofline model. Note the operation on

the left is bound the available memory bandwidth while the operation on the right is only

limited by the computing power available. By Giu.natale - Own work, CC BY-SA 4.0.

https://commons.wikimedia.org/w/index. php?curid=49641351

In Figure 1.1 we see a plot using the Roofline model for 2 compute kernels. On the Y axis we

find the performance metrics (GFLOPS in this case) while on the X axis we find the operational

intensity, also known as arithmetic intensity, denoted as I and measured in FLOPS/byte. The

operational intensity is a metric of how many arithmetic operations can we perform for each byte

we fetch from memory. For kernels with low I, such as O1, the peak performance will be bounded

by the memory bandwidth β since we will require more data to complete the same amount of

operations than a kernels on the right end of the spectrum. These kernels (such as O2) can perform

many operations before requiring to access memory again, because of this, their performance is

bound only by the maximum number of FLOPS the system can execute per second.

When a kernel’s operating point is at the intersection of the performance bound set by the system

and the memory bandwidth it finds itself at the optimal operation point since it is able to maximally

2

utilize the available memory bandwidth to achieve the maximum FLOPS of the system.

Memory bandwidth being a bottleneck has become increasingly more critical in modern comput-

ing. For example, in a multi-core chip, computing threads executing concurrently will inevitably

contend with each other for the limited bandwidth of its main memory. Without advanced algo-

rithms to deal with this issue, different threads will interfere with or block each other, thus severely

degrading its overall computing performance. While this is a significant hurdle in traditional pro-

cessor architectures, in reconfigurable computing the programmable logic chip provides an unique

opportunity to customize application-specific digital circuits in order to achieve significantly higher

computing performance. Even more interestingly, modern FPGA devices often contain tens of in-

dependent memory blocks capable of achieving a huge aggregated memory bandwidth.

To alleviate this problem, several techniques have been developed to improve concurrent access to

the required data, of which memory partitioning and mapping algorithms have proven to be highly

effective in a plethora of situation and thus have attracted the attention of the research community.

Fundamentally, the memory partitioning and mapping problem can be formulated as a memory

access scheduling problem in both temporal and spatial dimensions. Ideally, memory partitioning

and mapping schemes can not only maximize memory access performance but also incur lowest

possible costs in logic usage and energy consumption. Given the significance of optimal memory

partitioning and mapping, these have been extensive studies that aim at achieving fully-parallel

memory accesses for a set of computing statements.

The goal of partitioning schemes is to allow parallel access to the data required by the computation

every clock cycle, avoiding the need to serialize accesses to memory which might not have enough

bandwidth to provide the data fast enough in order to keep the desired (or sometimes even required

as it is the case of real-time applications) throughput.

3

Most modern processors and GPU’s come with some partitioning and banking algorithms already

built-in directly in the hardware, which allows for the execution of most pieces of code with accept-

able performance. However, when performance requirements are increased and more specific or

complicated memory partitioning and scheduling schemes are needed, it usually means dedicated

hardware accelerators must be used. Programmers can find themselves in the need to design these

accelerators at the Register-Transfer level (RTL) using Hardware Description Languages (HDL)

such as Verilog and VHDL to control the most minute details of the functioning of the hardware

and memory subsystem in order to ensure the desired levels of performance. The problem lies

in the fact that designing efficient HDL code usually goes beyond the expertise of most seasoned

programmers and is usually left to HDL experts with years of experience and intimate knowledge

of the limitations and intricacies of the hardware platform where the accelerator is going to run on.

This increases design times and costs since now an additional expert needs to be hired in order to

complete the project and meet the specifications.

This is why High-Level Synthesis (HLS) has gained immense popularity in recent years. HLS are

a set of software tools that compile high-level ”soft” programs into efficient RTL ”hard” specifica-

tions. This is of particular importance in today’s computing world where FPGA devices become

readily available in many heterogeneous computing systems such as Microsoft Azures servers.

Among many well-known optimization techniques used in HLS, memory partitioning is probably

one of the most studied and applied in order to improve performance and increase parallelism in

synthesizing computing kernels. However, almost all of the previous HLS work strictly focuses

on stencil-based computations, where the distance between memory accesses within each kernel

iteration remains constant in its data domain. Unfortunately, stencil-based kernel computations are

only but a subset of all the available code kernels widely used for scientific and general purpose

applications. The case where the geometry of the memory accesses within each kernel iteration

changes with time is known as non-stencil or sometimes referred to as irregular memory access.

4

Even with the help of sophisticated HLS tools efficient register-transfer level (RTL) ”hard” spec-

ifications still requires significant amount of ”tweaking” if the access performance of synthesized

memory subsystems needs to be effectively optimized. As such, one central research topic in the

high-level synthesis (HLS) of FPGA is how to automatically construct parallel memory access ar-

chitectures and schemes that allow for simultaneous, conflict-free, accesses to all the data required

for continuous executions.

Adding to the problem, most existing memory banking techniques, to the best of our knowledge,

can not guarantee solution optimality, or a lower bound for partition factor, for all stencils. There-

fore, several key questions remain to be answered: 1) Given a stencil based computing kernel,

what constitutes an optimal memory banking scheme that minimizes the number of memory banks

required for conflict-free accesses? 2) Furthermore, if such an optimal memory banking scheme

exists, how can an FPGA designer automatically determine it? 3) Finally, does any stencil based

kernel have the optimal banking scheme? We believe that all these questions possess especial

interests as High Level Synthesis (HLS) gradually gains popularity among FPGA designers.

Furthermore, many scientific codes, unlike stencil-like computing kernel with static memory off-

sets, exhibit much more general and sophisticated memory access patterns, thus posing much

greater challenges to achieving effective memory partitioning and mapping in order to facilitate

parallel memory accesses. Intuitively, if the memory accesses in non-stencil kernel computing are

completely random, then effectively extracting any kind of parallelism is unlikely. As such, one

naturally wonders what happens if we limit our scope to a subset of non-stencils that obey spe-

cial mathematical properties. Unfortunately, even for the irregular non-stencil kernel with affine

memory accesses, the body of work is quite limited because its changing geometry of memory

accesses during each kernel iteration makes it complicated to find some sort of pattern to exploit

that is independent of the problem size. This problem is further aggravated that, in order to keep

calculations simple enough to be implemented efficiently with hardware, most analysis focuses

5

on linear transformations and polyhedral analysis of the memory access that restricts the number

of solutions. In short, to fully exploit memory-level parallelism in non-stencil kernel computing

widely found in scientific applications, finding a versatile yet cost-effective method to synthesize

application-specific hardware module, which not only is easy to implement but also assures solu-

tion optimality, from high level software code is imperative.

Motivation

With all this in mind, this section presents a relevant example where we explain in detail the

advantages of optimal memory partition algorithms and how they can help increase data throughput

while maintaining resource utilization to a minimum.

Video and image processing as well as feature extraction inside the convolutional layers in a Con-

volutional Neural Network or CNN involve a series of memory accesses and arithmetic operations

such as multiplication and divisions executed in a loop better left for dedicated hardware to handle.

This is because unless the data needed to be accessed by the loop can all fit in cache, which is

rarely the case given the increasing resolution of the images begin processed, it requires costly

accesses to lower levels of memory which have much higher latency and can take up to several

orders of magnitude longer in terms of clock cycles to fetch that cache access. On the other hand,

processors have very limited quantities of dedicated hardware used to handle more complicated

arithmetic operations such as multiplications, divisions and Multiply-ACumulate (MAC) so only a

limited amount of concurrent instructions can be scheduled at any given time.

In contrast, a dedicated hardware accelerator offers a custom memory subsystem that can be tai-

lored for a specific kernel such that the number of costly off-chip memory accesses is minimized

by taking advance of data reuse at the same time one can have as many processing elements, each

6

capable of executing all the required arithmetic operations, as needed to achieve certain level of

performance.

In the aforementioned applications, one of the most common computational kernels is the So-

bel edge detection. This kernel, belonging to the stencil family of memory access patterns, is

convolved with the input image or feature map to generate an output image that removes the low-

frequency information, leaving only the areas where there was a sharp change in the content of the

input, i.e. edges. The traditional Sobel Edge detection kernel is composed by two 3×3 matrices [8]

whose coefficients can be seen in equation 1.1.

Gx =













−1 0 +1

−2 0 +2

−1 0 +1













∗ A,Gy =













+1 +2 +1

0 0 0

−1 −2 −1













∗ A, (1.1)

These two matrices Gx and Gy are convolved with the input data to calculate the gradient in the x

and y direction respectively. The final output G, that combines the gradient information for the x

and y axis, is computed by taking the magnitude of both gradients as per equation 1.2:

G =
√

G2
x +G2

y (1.2)

In Figure 1.2 we can see the original data to the left, in this case an image, and the output resulting

of applying the Sobel operator to it. In this case the output is an image where the edges of the

objects in the input image are highlighted.

7

Figure 1.2: Example of Edge Detection. Original image (left) and filtered image using

a Sobel Edge Detection Kernel (right). By Shaddowffax - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index. php?curid=45561476

The way the convolution operator works on an image is exemplified in figure 1.3. In real appli-

cations we operate on each individual pixel of each color channel in the image, which naturally

forms a grid. To keep the example simple enough instead we operate on a 4× 5 grid superimposed

on the grayscale image shown in (a). Operating on this grid now, we see the first iteration of the

operation in Figure 1.3 (b) where we need to fetch the data elements in gray in order to calculate

the gradient as shown in Equation 1.1 and 1.2 which will be stored in element (B,B) of the output

image (right) shaded in dark gray. In the next iteration, shown in (c), the 3×3 window of interest

is shifted one column to the right. Similarly, the result of this second computation is stored one

element to the right from the previous one in location (B,C). Finally, (d) shows the final result of

applying the kernel to the whole image.

8

(a) (b)

(c) (d)

Figure 1.3: (a) Original grayscale image with superimposed 4 × 5 grid used as input of the Sobel

edge detection kernel. (b) First iteration of the kernel. Light gray, data elements accessed from

the input image (Left). Element in the output image where we store the gradient computation after

applying the kernel (Right). (c) Second iteration of the kernel. Light gray, data elements accessed

from the input image (Left). Element in the output image where we store the gradient computation

after applying the kernel (Right). (d) Output image after applying the kernel to the whole image

Trying to execute this kind of kernels, where each iteration requires access several memory loca-

tions to complete a single operation, in a traditional architecture with a memory subsystem similar

to the one seen in Figure 1.4 has the disadvantage that even if we have enough execute units to

perform all the arithmetic operations we need in parallel, the monolithic memory architecture im-

plies we need to serialize the accesses even to the on-chip memory to fetch all the data we need.

In other words, each of the nine memory locations needed to be accessed for this example would

need to be accessed from on-chip memory one by one. If we can access on-chip memory once per

9

clock cycle, this means it will take 9 clock ticks just to fetch the data we need to start operating.

For larger kernels this problem is aggravated even more. Note this also means these kind of kernels

are memory-bounded according to the roof-line model since performance is limited mainly by the

available bandwidth and have relative low operational intensity.

Figure 1.4: Example of a traditional memory subsystem

However, if we can find a way to divide the data into banks, meaning storing the information in

independent memories that can all be accessed simultaneously, then we could move away from

the monolithic and sequential data access architecture to a more efficient and parallel one. Figure

1.5 shows an example where we have divided the data domain, i.e. the original input data, into 9

different banks denoted by the number inside the grid.

10

(a) (b)

Figure 1.5: Partitioned data space. Each number corresponds to a bank. Elements with the same

number are assigned to the same bank. First (Left) and second (Right) iterations of the Sobel Edge

Detection Kernel.

Although the architecture of a dedicated hardware accelerator, and the associated custom memory

subsystem and banking scheme, will vary from kernel to kernel, there is a plethora of methods

designed to find a general solution to the banking problem. These techniques will be explored in

Section 2. Using the algorithm defined and explained in [1] we find a valid and optimal banking

scheme for the Sobel Edge Detection kernel that uses as many banks as memory accesses are

required to complete one computation which is the definition of optimallity for this problem.

If each bank is independent from each other and can be accessed concurrently, then from Figure

1.5 (a) we observe now all elements inside the gray area on the input data (left) can be accessed

simultaneously since they have all been assigned to different banks. If we still maintain the con-

dition that all memory accesses can be performed in one clock cycle then now we only require

one clock tick to fetch all the data we need to complete the current computation from the on-chip

banks. The result of course is then stored at the same memory location of the output data since the

actual execution order of the kernel and the required read/write locations of each iteration have not

been modified in any way. A valid memory partitioning scheme is not valid for just one iteration, it

is supposed to ensure conflict-free, fully parallel memory access during the entire execution of the

11

kernel. In Figure 1.5 (b) we see the new memory locations we need to access on the next iteration

from the original data domain (left). Note that even though the region of interest has been shifted

to the right by one column all the elements in the shaded area are still assigned to different banks

which means that once again we can access them all in parallel without them interfering with one

another and thus having to serialize the accesses. If we overlap a 3×3 rectangle on any region of

the input data domain we will see all the elements will be assigned to different banks, ensuring the

desired property of conflict-free parallel memory access.

Due to the nature of the convolution operator, the relative position of each access within the kernel

(for example, the top left corner of the 3×3 rectangle in our Sobel example) will access all the

banks after the code finishes execution. This means, all possible permutations of the banking will

be accessed withing the region of interest. Because of this, extra routing logic is needed to have

each execution unit access all banks. This extra routing logic might possibly reduce the clock

speed by some amount but the speedup gained by parallelizing the memory access greatly surpass

this reduction in execution speed. It is because of this reduction in clock period that the final

speedup gained after applying a memory partitioning algorithm is not exactly equal to the number

of memory accesses in each kernel. Continuing with our Sobel example, this means that even

though we reduced the number of clock cycles it takes to fetch all the data elements from on-chip

memory from 9 to just 1, the speedup gained is not 9× but in real applications might be closer to

8×.

Figure 1.6 shows a simplified diagram of the memory subsystem used by a hardware accelerator

that has been designed to use a banking scheme allow parallel access to the required data.

12

Figure 1.6: Example of a memory subsystem with several banks to allow conflict-free, parallel

memory access.

The off-chip memory controller is in charge of loading the data required for the kernel either on

its entirety or in sections that fit the on-chip memory and distributes it to the corresponding bank

following the pre-computed partitioning scheme. Then, during runtime, a multiplexer routes the

data from the correct memory bank to the processing unit that requested a particular memory

location to be used on the current iteration.

Note with this architecture the memory controller that handles off-chip communication still has to

do the same amount of work, bringing on chip and off loading the same amount of elements but

now the on-chip memory access is done in parallel.

Contributions

The main objective of this dissertation is to compile our work in the area of automated mem-

ory partitioning and banking algorithms for HLS tools targeting reconfigurable architectures. We

13

include our novel tessellation-based memory partitioning and mapping, graph-based approach to

optimally solve memory banking for any given shape of stencil as well as our graph-based method-

ology to arbitrarily reduce memory access conflicts on non-stencil code. Finally we present our

work where we find an algorithmic solution to obtaining the optimal partition factor for a sub-set

of non-stencil computations we define as quasi-stencil by means of applying a non-linear trans-

formation that raises the dimensionality of the problem which in turns converts this Quasi-stencil

code into a stencil, opening up a plethora of partitioning algorithms inclusion optimal ones.

In this dissertation we claim the following contributions:

• We expand on the literature review presented in our previous work to include all the most

recent research up to the moment of compiling this dissertation. With this, we aim to paint a

clearer and more detailed picture of the state-of-the-art techniques with regards to automated

memory partitioning algorithms in HLS for both stencil and non-stencil code kernels by

comparing them in-depth with our approaches in the appropriate cases. Mentioning the pros

and cons of each.

• We compile our previous work in a coherent manner with the goal of presenting a cohesive

and unified framework that showcases the evolution of our work and the increasingly better

results obtained in terms of partition factor, resource utilization, clock period, among other

performance metrics not only for stencil computations but also non-stencil code.

• We refine our testing and result collection methodology to obtain updated results, comparing

our performance metrics against those of the applicable state-of-the-art methods in automatic

memory banking for HLS targeting reconfigurable architectures.

14

Dissertation Outline

The rest of this dissertation is divided as follow:

• Review of current state-of-the-art methods and related literature are presented in Chapter 2.

• Chapter 3 contains our approach in tackling the optimal memory partition problem in sten-

cil computations based on a purely geometric approach involving tessellation to find the

smallest region of repeated banking. This mapping is then stored and used to do the par-

titioning. With this, we achieve better results in some kernels than current state-of-the-art

methods. Our algorithms are capable of automatically finding the optimal multi-dimensional

loop unrolling factor and finding the optimal partition factor when the original stencil does

not tessellate the entire data domain. To find a proof on the optimality of our solutions, we

start exploring the idea of modeling the problem a a graph in order to use the well established

and powerful algorithms in graph theory to solve the partition problem.

• Our graph-based solution for stencil computations is presented in Chapter 4 where we find

the smallest induced sub-graph of the entire conflict graph needed to be colored in order

to find the optimal partition factor of the kernel. The optimality of this solution is math-

ematically proven by using an optimal graph coloring algorithm to find the partition. For

non-stencil code, given the variance in the geometry we are unable to algorithmically find

the equivalent induced sub-graph as in stencil computations.

• Chapter 5 contains our approach of trying to emulate the ability of implementing a banking

scheme where we store a region of repeated banking into a small memory, we formulate

our graph-folding strategy where the entire conflict graph is mapped to a small memory of a

predefined size generating a wighted graph. The aforementioned graph is then colored using

an algorithm depending on the end user needs and the solution is stored to do the mapping.

15

With this approach we can arbitrarily reduce the number of memory access conflicts at the

expense of additional resource utilization, maximizing memory access parallelism.

• Our algorithm approach to finding the optimal partition factor for a sub-set of non-stencil

code is explored in Chapter 6. Here, we find a sub-set of non-stencil code we have labeled as

Quasi-Stencil which under a specific non-linear transformation, namely prime factorization,

is mapped to a domain where the memory accesses now behave as stencils, which opens

up the possibility of using the vast repertoire of stencil memory partitioning techniques,

including optimal ones.

• Finally, Chapter 7 we summarize our findings and give our conclusions regarding our con-

tributions to the stat-of-the-art memory partitioning algorithms as well as mention possible

future research directions we desire to pursue including adding data reuse analysis to our

methodologies and further refinements to our quasi-stencil methodology in order to handle

more general cases.

16

CHAPTER 2: LITERATURE REVIEW

Study of memory partition schemes dates back to the first days of computer science and memory

banking. Attempts to automatically find the optimal banking scheme for simultaneous, conflict-

free, accesses in stencil computations can be traced back to early work dealing with memory parti-

tion in parallel computers [9]. All these works shared the common objective to create a conflict-free

memory access scheme for memory access maps in the form of rows, columns, diagonals or anti-

diagonals operating on square matrices of size N × N with N banks. Work in [9] studied how

to partition the memory space in the fewest number of banks for kernels that had stencil memory

access in SIMD machines following a technique to generate the bank and address on the fly called

skewing schemes that relied on hyperplanes and on the fact that if the stencil tessellates the plane,

then there should exist a linear skewing scheme to do the partition. The limitation of this technique

and all others using the same partition scheme with just one family of hyperplanes is that it does

not ensure the solution will indeed be optimal for all stencils and does not provide an upper bound

to the maximum partition factor it might need. Later work by [10] proved a conjecture by [9]

that claimed there exist a valid linear skew, if there exists a valid periodic skewing scheme. The

advantage of this skewing scheme being periodic is that it allows for an efficient and simple way to

locate the data. This work also proved there is a polynomial time algorithm to determine if a stencil

tessellates the memory space. In [11], they refined the theory behind the skewing schemes on the

basis that previous mathematical definitions where imprecise. The most significant contribution of

this paper is the fact that an upper bound to the maximum number of banks needed to generate a

linear skewing scheme is stated, being the first prime greater or equal to N for an N-point stencil.

Similar results were compiled and polished in [12].

More recently, the authors in [13] translated the idea of hyperplane partitioning to the HLS frame-

work with their AMP method. This method maintained the same single family of hyperplanes for

17

bank calculation but added a memory padding technique that allowed for a much more simple way

to calculate the address of a memory location in a particular bank at cost of some memory over-

head. This method still lacks an optimality proof, namely the minimum number of banks and the

actual parameters of the partitioning hyperplane are unknown, requiring an heuristic search to find

them. Additionally, it does not always give the true optimal partition factor [10]. Further work on

the area by [3] introduced the concept of memory address block, where two or more contiguous

memory locations on the same row are assigned the same bank, each with a different address inside

the bank, which allowed to reduce the number of the partition factor needed for some cases. They

also refined the padding technique to reduce memory waste. Some of the limitations is that the

blocks only extend in one of the dimensions of the memory space and still there is no formal proof

of what is the minimum partition factor needed to do the mapping. In [14], the authors introduce

a method that uses the geometric information from the stencil itself and can find a valid solution

(partition factor and orientation of the hyperplane family) to do the mapping much faster than pre-

vious methods with much less arithmetic operations needed. Again, this solution does not always

guarantee the same partition factor, but it ensures all banks are balanced (contain the same number

of elements) and reduces memory overhead.

In addition to the hyperplane mapping strategy, there has also been a line of research based in

lattices that tries to overcome the limitations of the aforementioned method. In [15] the authors

propose the use of lattices to solve the problem of memory reuse. Although they are trying to solve

a different problem, they set a solid mathematical background to do the analysis of memory access

under the lattice framework. This work, based on the liveliness of a variable, tries to reduce the

memory needed for the execution of algorithm. They make the connection between an integer lat-

tice and a modular mapping of the indexes of the array, a mapping strategy of the same dimension

as the data space. One of the limitations of the this method is that, since their goal is not to solve the

memory partition problem, the partition factor considered optimal is the determinant of the used

18

lattice, which does not guarantee will be the optimal in terms of the smallest factor. The definition

of conflict also differs from the one considered in the traditional partition problem. Instead of it

being simultaneous accesses to the same bank in a loop execution, they consider a conflict when

there are some indexes considered alive simultaneously under a given schedule. Work in [16] im-

proves and expands on the idea and focuses explicitly in memory partition problem. They use

Z-polyhedra model to do the analysis and follow the same concept of integer lattices and a modu-

lar mapping of the indexes of the array to do the mapping. The main idea is that they explore all

lattices of the same rank as the memory space such that the determinant corresponds to the number

of memory banks to use, and the optimization problem is formulated around the minimization of

an objective function seeking to reduce the number of conflicts. In this case, we have a solution

that is analogous to using as many families of hyperplanes as the dimensionality of the data space,

this guarantees the optimal partition factor can indeed be found. Note that this also means that any

solution obtained in the hyperplane partitioning method using a single family can also be found

using this approach, making it only a subset of the possible solutions. They also tackle the problem

of memory minimization, solving a minimization problem that ensures either asymptotically zero

or a small, fixed, and arbitrary amount of memory waste. The main limitation of this work is the

assumption that the user has prior knowledge of the (at least approximate) number of banks to

be used (although an heuristic search to find the best determinant is considered) and not find the

smallest factor from the start. Another limitation of this work is that it relies on and the assumes

the code is already parallelized and the loops properly rearranged.

Our previous work in [17] reintroduces the concept of tessellation and modifies it specifically

to fit the HLS framework targeting FPGAs. In it, we further developed and expanded on the

concept of block introduced in [3], relating it with the concept of multi-dimensional loop unrolling,

thus making the block a hyper-rectangle of the same dimension as the problem. We also made

the connection between the concept of lattice (and the associated families of hyperplanes) and

19

tessellation, using this as their basis to claim that we can indeed find the optimal partition factor.

The main idea of this work is the introduction of the Supertile, the smallest hyper-rectangle such

that the mapping contained in it allows for conflict free access and can be used to cover the entire

data domain just by repeating it side by side without overlapping. This solution, as well as the intra

bank offset calculation methods, offers not only a simplified bank and address calculating logic,

eliminating the need for DSP slices entirely, reducing overall resource utilization, and achieving

higher clock speeds, but in many cases, a reduction in memory waste in comparison with state-of-

the-art methods. The main disadvantage is the fact that still no upper bound to the partition factor

is given.

More recently, graph-based approaches have received a lot of interest from the research com-

munity. In [18], the authors map addresses from the memory access trace to a small subset of

addresses with the goal of finding a solution with N banks using a mask with log2(N) bits. Each

of the masked address is considered a node in a graph and addresses that need to be accessed in

the same iteration are joined by an edge. If the maximum clique is larger than N , then N needs

to be increased and the whole process repeats until this condition is met. The bank assignment is

then done using optimal graph coloring. The solution is then stored in a multi-level lookup table.

The main advantage from this method, contrary to [16] and [17], is that it can in theory be used

for any kind of kernel, stencil or not, with better results than [3] for non-stencils and no worse

for stencils. The disadvantage is the time it takes to test all possible masks to find the best and

there is still no guarantees on the upper limit needed to achieve an optimal solution. Although this

method is general enough to be used in both stencil and non-stencil kernels, and even those mem-

ory access patterns that can not be written as affine accesses, the solution space explored leaves

out certain solutions that at a minimum increase of hardware usage, provide a much better conflict

rate, increasing throughput. If the memory access are spread all over the memory space, one would

require a mask that includes the information for most of the bits, and the resulting graph would

20

prove increasingly difficult to color given the NP-complete nature of he problem. Another graph

based approach is the one presented in our previous work [1] .Unlike previous approaches, in this

work we propose a graph-based approach to find the optimal partition factor of stencil computa-

tions natively and with proof absed on a rigorous graph theory framework. Here we construct a

special data structure called ESG, a special graph that, when colored optimally, gives the optimal

partition factor for that given stencil. Coloring this ESG gives the advantage of the result being

optimal without having to color the entire memory conflict graph of the problems which given the

NP complete nature of the problems is unfeasible even for small problems. The main limitation of

this method is, for bigger stencils, performing optimal graph coloring can be computationally ex-

pensive. Because to generate the ESG we require to convolve the stencil with itself, the fact of not

having an stencil to work with discards this method to be implements for any kind of non-stencil

code directly.

Memory partitioning for non-stencil code however presents a very limited body of study, specially

for FPGA and the HLS community. This is why we proposed another graph-based framework

that tries to tackle this problem in [2]. In this work we propose a best-effort approach that tries

to average out the conflict graph to a manageable size by overlapping regions of it and color this

graph to obtain a mapping scheme. Although this method is general enough to be used for any kind

of kernel code, the obvious limitation of this method is that it does not offer conflict-free memory

access for all cases and cannot provide the optimal partition factor for a given non-stencil code.

Another limitation is finding the best tile size to do the "folding" is not explored and we provide just

a best effort solution based on some pre-defined folding sizes. It is good to note however that when

applied to a stencil graph, if the right folding size is chosen, one will find the same solution as the

Supertile from [1]. This optimal folding size for stencils is evidently the size of the Supertile (or an

integer multiple of it) since by definition the Supertile is the smallest region of repeated coloring

that can be used to color the entire data domain while still ensuring a conflict-free, parallel memory

21

access scheme. In the stencil case, if the Supertile is used as the folding size, we can also ensure

the conflicts will be entirely eliminated.

Very recently in [19] the authors propose an edge-centric method to improve the performance of

non-stencil kernel execution. Their methodology generates a graph that models memory access

precedence and dependency of stencil and on-stencil affine kernels. These graphs are divided into

ranks, where the data in each rank dependents on the data in lower ranks to be computer. All data

that does not have any dependency are assigned to Rank 0, and that serves a the base of the graph.

Edges are then partitioned based on their destination and source rank on an N ×N matrix, where

N is the number of ranks, and each rank is further partitioned into P banks to allow parallel update

of ranks. Each block of edges going from Rank A to Rank B that is then partitioned into a P×P

block where each block is an edge going from Bank X of Rank A to Bank Y of Rank B. One of the

limitations of this method is that if the number of banks sleeted per rank is not enough, it cannot

ensure fully parallel update of the rank. Furthermore, since P banks are needed per Rank, if the

graph is complex and with several ranks, the number of total memory banks will be increased,

which can hurt performance given the increased complexity of the interconnect. A methodology

to select the number of banks P per rank to obtain acceptable results is not provided.

While most of the previous work has mainly focused on ensuring parallel access for stencil kernels

such as the Sobel edge detection and Denoise but very little work has been done to ensure parallel

memory access in general code kernels. Our work in [2] is one of the few efforts to generalize

memory partitioning schemes to on-stencil code. In [20] we propose a methodology to tackle a

specific sub-kind of non-stencil computing kernels ensuring an optimal solution which offers truly

conflict-free, parallel memory accesses. If the kernel satisfies the requirement of being what we

define as a quasi-stencil, definition and requirements which are explained in detail in section 6,

our methodology can effectively transform its original memory space into a new one through a

nonlinear transformation based on prime factorization, where the original non-stencil kernel with

22

irregular memory accesses will behave like a conventional stencil with regular memory accesses,

therefore allowing for the use of the existing methods of memory partitioning and data reuse. For

several real-world non-stencils, our results have shown that all of then only require a small num-

ber of memory banks independent of their problem size. This is a significant improvement over

state-of-the-art methods for non-stencil kernel computations because the reduction in partition size

directly leads to a reduction of the interconnect complexity which in turn leads to better resource

utilization, power consumption and increased performance. Our future work will focus on ex-

panding the definition of quasi-stencil code to more real-world applications and exploring other

effective nonlinear transformations. Ultimately, we aim at achieving optimal partition factors for

an increasingly larger number of non-stencil kernel computations.

While beyond the scope of our work, it is worth mentioning some areas of research also try to

maximize the use of off-chip bandwidth by improving the data reuse opportunities. This is, the

times a computing kernels can reuse some of the data that has already been brought on-chip to

perform a new computation by either changing the execution order ot the data layout to reduce the

number of very costly off-chip data transfers.

An approach that tries to take advantage of the expressiveness of the polyhedral framework is

explored in [21]. They use a scratchpad memory system and evaluate different arbitrary tile sizes

by solving an optimization problem aiming to minimize bandwidth while adhering to a maximum

buffer size while exploiting data reuse between iterations when possible. The main limitations of

this method are that it relies on costly scratchpad memory systems as on-chip storage that have a

high resource utilization due to its complexity. Although the authors claim the number of possible

tile sizes to try is tractable, claiming in general it remains under 100, this cannot be ensured for

all cases. Their model also suffers from the general limitation that the possibilities are enumerated

based on a model which if not defined properly might miss a better solution. They also mention

this technique cannot guarantee correctness of behavior for the case of imperfectly nested loops.

23

Similarly to the previous work, in [22] the authors face the problem of exploring the huge design

space that is associated with reducing the amount of off-chip data transfers. This time, instead

of intra-tile reuse optimization, the authors also explore a design that maximizes inter-tile reuse,

which makes the solution space even larger. They achieve the reduction in communications mainly

by exploring iteration reordering. Once a target volume of memory operations are achieved, extra

optimizations seek to reduce the size of the buffers by means of additional transformations. The

way this is done is by modeling the problem with two independent cost functions, one that tries to

minimize inter-tile communication cost and another one that minimizes intra-tile communication

costs by using reuse buffers. The massive difference between the bandwidth available for off-chip

communication and on-chip resources is noted in the work in [23]. In this work the authors take

advantage of he cyclo-static representation that can be used to model certain kind of code, namely

perfectly nested, stencil code, to solve the problem of how to automatically determine the tile size

and optimal buffer size. Although they achieve significant higher throughput over Symphony-C

and Vivado HLS solutions even for a lower clock speed, they rely on data duplication to maintain

throughput which is not the most efficient use of on-chip resources which is supported by their

much higher resource utilization. In a similar manner, the work in [24] seeks to find optimal tile

sizes that partition the data/iteration domain into chunks that can fit into size-constrained faster on-

chip memory. While most work trying to solve this problem uses a partial solution enumeration

approach, here the authors an analytical approach based in polyhedral parametric model to find the

the size for optimized data reuse. Their parametric approach formulates a non-linear optimization

problem that takes into account on-chip memory constraints and finds the tile size for minimizing

communication overhead. To test the validity of their approach and optimization model, they apply

their method to three very popular computing kernels: matrix multiplication, a full search motion

estimation, and Convolution Neural Network. They compare their results with results for other

methods that use random enumeration of tile sizes, a method where the tile sizes are selected

through at random and then performance results are computed. On average, it takes this approach

24

half the time to find a solution that meets the requirements in comparison to the random approach

while also achieving a much better communication cost for a given tile size.

25

CHAPTER 3: TESSELLATION BASED APPROACH FOR OPTIMAL

MEMORY BANKING IN STENCILS

This chapter is based on our previously published work in Juan Escobedo and Mingjie Lin,Tessellation-

based multi-block memory mapping scheme for high-level synthesis with FPGA, Proceedings of

the 2016 International Conference on Field-Programmable Technology (FPT) ©2011 IEEE [25]

and Juan Escobedo and Mingjie Lin, Tessellating memory space for parallel access, Proceedings

of the 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC) ©2011

IEEE [17] that encompass our purely geometrical approach to find the optimal partition factor

and usable banking scheme for stencil kernels.

We will begin this chapter with a motivational example that will be used throughout this chapter

to demonstrate concepts and exemplify the contribution of our geometrical approach for stencil

kernels.

Motivating Example

In image processing and computer vision, stencil-based computing kernel frequently occurs. Fig. 3.1

(a) lists a simple example of one such example found in an image denoising task. In virtual memory

space, during each iteration, one pixel value will be replaced with a simple average of all its nearest

neighboring pixels. With the index i and j taking different integer values within their bounds, five

distinct memory locations will be either read or written. Clearly, in order to maximize the comput-

ing throughput of this code segment, one wish to access all these five memory locations in parallel

for all iterations, therefore achieving an iteration interval of exactly one clock cycle. Intuitively,

five separate single-port memory banks should suffice. Unfortunately, as shown in Fig. 3.1(c),

26

not any memory partitioning and mapping can accomplish conflict-free parallel memory access.

Specifically, we have shown three access iterations whose memory locations are enclosed with a

blue polygon. However, in each of these iterations, at least two memory location belong to the

same memory bank, which causes undesirable memory stalls and reduces its overall computing

throughput either by two times or three times.

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

1

1

1

11

11

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

22

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

(a) (b)

(c) (d)

i,j+1

i-1,j

i,j-1

i+1,ji,j

for i=0; i<L-1; i++ {

for j=0; j<M-1; j++ {

x[i][j]=(x[i-1][j]+x[i+1][j]+

x[i-1][j]+x[i+1][j])/4

}

}

Figure 3.1: (a) Kernel Code. (b) Memory Access Pattern. (c) Native Linear Shifting. (d)

Tessellation-Based Solution. ©2016 IEEE

27

On the other hand, for the same five memory banks, if we just change its memory mapping as

shown in Fig. 3.1(d), on can readily verify that, for any iteration, these five memory accesses will

only read/write to five distinct memory banks, thus creating 0 memory access conflict. This simple

example motivates us to develop an effective and yet efficient methodology to partition and map

any standard memory access pattern in order to achieve completely parallel memory access while

consuming least possible amount hardware.

Problem formulation

In this section we present the definitions and problems of memory partitioning. Important variables

to be used thorough the paper can be seen in 3.1.

28

Table 3.1: Table of symbols

Variable Meaning

N Partition factor

B Partition block

Bk Size of partition block in dimension k

m Number of array references in the inner loop

l Level of nest loop

I Iteration domain

D Data domain

d Number of dimensions of the array

~i Iteration vector

wk The k-th dimensional size of the memory

Z Integer set

S Storage requirement

P Access pattern (memory access map)

~Ai i-th element of an access pattern

Definition 1 (Iteration Domain) Given an l-level loop nest, the iteration domain I is formed by

all the iteration vectors~i = (i0, i1, . . . , il−1)
T within the loop bounds.

Definition 2 (Data Domain) Given an l-level loop nest, the data domain D is formed by all the

vectors ~x = (x0, x1, . . . , xd)
T within the matrix bounds.

Definition 3 (Affine Memory Reference) We say that a memory reference in a loop is affine if I

and D are affine spaces.

29

I andD are affine if one can define any d-dimensional affine memory access~x = (x0, x1, . . . , xd−1)
T

as a linear transformation of a one and only one l-dimensional iteration vector~i in the form of:

~x = Ad×l ·~i + ~C

Ad×l =













a0,0 . . . a0,l−1

...
. . .

...

ad−1,0 . . . ad−1,l−1













, ~C =













a0,l
...

ad−1,l













Where Ad×l is a coefficient matrix, ak,j ∈ Z is the coefficient of the j-th iteration vector on the

k-th dimension, and ~C is a a column vector with constants.

Definition 4 (Memory Access Map) A pattern consists of m data points or accesses defined as P

= { ~A0, ~A1, . . . , ~Am−1}, where ~Ai = (A0
i , A

1
i , . . . , A

d−1
i)T , ~Ai ∈ M, ~Ai ∈ Z.

If the position offset of P from the origin is ~O = (O0, O1, . . . , Od−1)
T then the address of each

elements of the accesses in P are now P ~O = { ~O + ~A0, ~O + ~A1, . . . , ~O + ~Am−1}.

Definition 5 (Memory partitioning) A memory partition of an array can be described as a pair of

mapping functions (f(~x), g(~x)) where f(~x) assigns a bank for the data element and g(~x) generates

the corresponding intra-bank offset.

A bank access conflict between to references ~xj and ~xk(0 ≤ j < k < i) is represented as ∃~x ∈ D

s.t.

f(~xj) = f(~xk)

This means the references intend to access the same bank in the same clock cycle. We use Problem

1 to formulate the bank mapping problem (for single-port memories).

30

Our memory partitioning consists of two mapping problems: bank mapping and intra-bank offset

mapping.

Problem 1 (Bank minimization) Given an l-level loop on the iteration domain D with m affine

memory references ~x0, ~x1, . . . , ~xm−1 on the same array, find a partition factor N such that:

Minimize : N = max0≤n<m{f(~xi)} (3.1)

s.t. ∀~xj , ~xk ∈ D, f(~xj) 6= f(~xk), 0 ≤ j < k < m

Eqn. 3.1 defines the objective function of memory partitioning, ensuring no access conflict between

any two references. After bank mapping, a data element in the original array should be allocated a

new intra-bank location. For correctness, two different array elements will be either mapped onto

different banks or the same bank with different intra-bank offsets. An intra-bank offset function is

valid if and only if:

∀~xj , ~xk ∈ D, ~xj 6= ~xk → (f(~xj), g(~xj)) 6= (f(~xk), g(~xk))

Which means either

f(~xj) 6= f(~xk) or f(~xj) = f(~xk), g(~xj) 6= g(~xk)

Problem 2 (Storage minimization) Given an l-level loop on the iteration domainD with m affine

memory references ~x0, ~x1, . . . , ~xm−1 on the same array, find a partition factor N, find an intra-bank

offset mapping function g with minimum storage requirement S such that:

31

Minimize :

N−1
∑

j=0

max∀is.t.f(~xi)=j(g(~xi)) (3.2)

s.t. ∀~xj , ~xk ∈ D, ~xj 6= ~xk → (f(~xj), g(~xj)) 6= (f(~xk), g(~xk))

Eqn. 3.2 defines the objective function of partitioning with minimum storage overhead, ensuring

a valid partition.

Motivational observation

One central problem of maximizing memory access performance is how to partition and map all

multidimensional memory references in a multidimensional loop nest to separate memory banks in

order to enable loop pipelining with simultaneous memory accesses. Without the loss of generality,

in this study, we assume both the loop initiation interval (II) and the physical memory port number

of each memory block to be 1.

The memory partitioning scheme in this paper consists of two problems: how to uniquely map

each individual memory access to a specific memory bank and how to determine the intra-bank

offset for each of such memory accesses.

The basic idea of the proposed methodology is taken from [25], which is to exploit memory space

tessellation. Mathematically, tessellation, or regular divisions of the plane, are arrangements of

stencil shapes that completely cover the plane without overlapping and without leaving gaps. Typ-

ically, the shapes making up a tessellation are polygons or similar regular shapes, such as the square

tiles often used on floors. Tessellations can be generalized to higher dimensions and a variety of

geometries.

32

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

(a)

(b)

Figure 3.2: (a) Tessellation Example. (b) Resulting Memory Mapping. ©2016 IEEE

As depicted in Section. 3, for the given memory access pattern depicted in Fig. 3.1(a), our tessellation-

based memory partitioning and mapping scheme can produce a conflict-free memory mapping

shown in Fig. 3.1(d). Fig. 3.2(a) depicts the basic idea of tessellating a given memory access

33

space, which is bounded with a red rectangle. Each cross-like shape represents a tile. Note that, in

each of these tiles, all memory locations are indexed with a unique integer, which denotes a differ-

ent memory block. With this tessellation and indexing scheme, each memory location is mapped

to a unique memory bank. To validate this resulted memory mapping, in Fig. 3.2(b), four different

memory access stencils are shown, each of them accomplishes completely conflict-free memory

accesses. In fact, moving this memory access stencil to any location within this memory space, no

memory access conflict can be found.

34

(a)

(b)

ux
uy

Tx
Ty

Figure 3.3: (a) Tessellation Example. (b) Embedded Mesh within a Tessellation. ©2016 IEEE

The fact that a rotationless tessellation can produce a completely conflict-free memory mapping

35

can be rigorously proven [9], [10]. We now briefly outline this proof. For a given tessellation

depicted in Fig. 3.3(a), connecting any corresponding memory location will result a mesh or lattice

space shown in in Fig. 3.3(b). Now, imagine translating a sliding window with the same shape of

the tessellating tile, it should be clear that no two memory locations will have the same memory

block index, hence achieving conflict-free memory access.

Overall Methodology

In this section we describe how we automatically map an array in a loop nest into separate memory

banks to enable parallelized memory access. We use a loop initiation interval (II) of loop pipelining

to measure the throughput. It represents the clock cycles between the successive iterations and

reflects the parallelism of on-chip memory access. For a fully pipelined loop with all accesses

parallelized, II is 1. This is the performance target in this paper.

36

int A [W1][W0]

for(i=1;j<W1-1;i++)

 for(j=1;j<W0-1;j++)

 :

 :

 Part 2:

Tile construction

 Part 3:

Tessellation test

Partial tessellation

 detection

 Part 4:

Super-tiles construction

MATLAB

for(i=1;j<W1-1;i++)

 for(j=1;j<W0-1;j++)

 :

 :

To Vivado HLS

int A [...], A [...], ... , A [...]
0 1 N-1

Input Code Output Code

 Part 1:

Block size calculation

 Part 5:

Transformed code

 generation

 Add

block

Figure 3.4: Design Flow

Fig. 3.4 depicts all of main steps of our tessellation-based memory partitioning and mapping

37

scheme. Specifically, given a piece of kernel code, we first extract its memory access pattern

in a straight-forward way by treating them as affine references and obtaining the index and offset

matrices. We then determine the block size and shape. With this, we create the first tile shape

in the form of a horizontally contiguous polyomino. Subsequently, we proceed with a heuristic

search, from a small pool of potential candidates, to find the vertices of the smallest parallelogram

generated by connecting the same access points of 4 instances of the original polyomino that has

no holes. If one is not found, the tile is modified by adding an additional "block" and the process is

repeated until no holes are left inside the parallelepiped. This will generate a valid tessellation of

the memory access space under consideration. Once we have a valid tessellation, we take advan-

tage of the periodicity of the tessellable pattern to find an equivalent tessellating pattern in the form

of a rectangle. This rectangle, so-called super-tile, will be used as a table to determine the bank

assigned to a particular reference. In the following two subsections, we describe in more details

all key steps necessary for our tessellation-based memory partitioning and mapping scheme.

Block size calculation

The first step in our method is to determine the block size and shape. This is vital to finding the

tessellation that offers the solution with the least amount of banks.

38

(a) (b) (c)

(d)

(e)

Figure 3.5: Different access patterns and their final tile shape. The blue outline represents the

block. Dots are the center of a cell: original memory access are red, extra bank in orange. Green

parallelepipeds represent loop unrolling/tilting.

In figure 3.5 (a) and (b) we can see the Bicubic and Denoise access patterns respectively. Both

of this patterns would require 5 memory banks [26] without the use of blocks. The number of

required banks is reduced to 4 [25] when the block is introduced. The rest are arbitrary patterns

39

which again, would require a greater number of memory banks if the original pattern were used

directly.

Although previous work by [3] also makes use of this parameter, their analysts is restricted to 1-D

blocks on d0, and only sizes that are a power of 2. This because the addition of an extra division

operation would hinder performance and keeping it as a power of 2, would result just in a shifting

operation, which is free in terms of hardware resources in FPGAs.

The tessellation method takes away this limitation with its much simpler bank and offset calcula-

tions, freeing the block to be any size and shape necessary to achieve the optimal bank number.

The block size is intrinsically related to the concepts of loop unrolling and loop tilting, which are

widely used in the compiler community to improve performance, particularly spatial and temporal

locality. Loop unrolling is a technique commonly used to improve performance when hardware

resources are available, allowing the parallel execution of instructions with no inter-dependence.

While loop tilting or loop skewing is a technique used to keep dependences between iterations

of the outer loop. This is done by changing the bounds of one, or more, of the loops to be an

affine function of the others, this changes the areas of the data domain accessed by iterations of the

innermost loop, thus removing any dependencies.

If one were to access the data domain using the original access pattern following the optimal tilting,

and maximum unroll factor for all dimensions, the elements of the data domain accessed by any

particular element would make the block which size and shape would give the best tessellation

results.

Both techniques are needed to obtain the optimal results. Applying only loop unrolling to the

arbitrary patter 3.5 (e) yields a suboptimal result. Needing to add many more blocks to the tile in

order to perform a total tessellation of the data domain. While introducing a tilt, the tile meets all

40

the requirements for tessellation.

Figure 3.6 shows a simple method to extract the block size, using loop unrolling only. This is the

algorithm used in section 3 for all the benchmarks. No loop tilting was implemented because for

most stencil applications commonly used, there is no tilt needed in order to achieve the optimal

solution.

Data: P = {A0, A1, . . . , Am−1}, w = [w0, w1, . . . , wk−1]

Result: Block size (Bsize, B)

B = [0, 0, . . . , 0]1×k ;

Bc = [0, 0, . . . , 0]1×k ;

Bnc = [0, 0, . . . , 0]1×k ;

forall Aj , Am , m 6= j do

for 0 ≤ i < k do

if Am − {A
i
m} == Aj − {A

i
j} then

∆c ← |Aj − Am| ;

else

∆nc ← |Aj − Am|;

end

end

end

for 0 ≤ i < k do

if min (∆ci,:
> 0) 6= ∅ then

Bc1,i
← min(∆ci,:

> 0) ;

else

Bc1,i
← wi

end

Bnci ← min(∆nci,:
> 0);

end

Bk = max(Bc) s.t. w − Bc > 0;

Bn = Bncn, n 6= k ;

forall B s.t. Bn == wn do

Bn ← max(An
j)− min(An

j)∀j;

end

Figure 3.6: Block size calculation

41

Tile construction

Once the block size is obtained, the next step is to generate the first tile to test. Note that the first

tile is not always just the overlap of a block on the original accesses.

Data: P , B

Result: Tile (T)

forall Ai ∈ P do

forall Bi ∈ B do

T← Ai +Bi;

end

end

for min(T1
j) ≤ i ≤ max(T1

j) ∀j do

Range=max(T0
j)−min(T0

j) s.t. T 1
j == i

∀j;

for

min(T0
j) ≤ j ≤ min(T0

j) + ⌈Range/B0⌉

do

Tile← [j i];

end

end

Figure 3.7: Algorithm for Tile Formation.

What algorithm 3.7 is doing, for 2D case, is for every distinct coordinate value in d1 of the access

pattern, calculate the range where there are elements in d0, and fit consecutive blocks until the

interval is covered. This can be extended to N dimensions.

42

Tessellation

As stated above, the core idea behind our methodology is the concept of geometric tessellation,

which mathematically covers a d-dimensional space with a fixed pattern or tile using only trans-

lated, non-overlapping copies of the same tile. To achieve a gap-less tessellation, finding a suitable

and optimal tessellating regular shape, tile, presents the first challenge. In this study, we need to

develop a general methodology to compute a tessellating tile shape for any memory access pattern.

Before presenting our algorithms in detail, we state the following theorem:

Theorem 1 A tile T = {T0, T1, . . . , TN} comprised of N units blocks can tessellate a given plane

completely if the corresponding unit blocks of 4 non-overlapping instances of a given tile can form

the vertices of a parallelepiped with no holes inside.

43

(a) (b)

(c) (d)

Figure 3.8: (a) 4 non-overlapping instances of the memory access map and embedded parallelo-

gram. (b) 4 non-overlapping instances of the memory access map forming the smallest parallelo-

gram. (c) Updated tile with extra block. (d) Final tessellation with new tile. ©2016 IEEE

For this to be true, the resulting hyper-parallelepiped must be the one enclosing the smallest area

(for 2D), smallest volume (for 3-D), etc. If there are no "holes" or unpartitioned elements inside

the hyper-parallelepiped, the partition problem is solved. If there are elements that don’t belong to

any block, then the "hole" is covered by an additional block. This block is attached to a particular

44

instance and added to all the other instances in the same location and the process is repeated with

this new tile until the hyper-parallelepiped has no holes inside. It has been proven that a tessellation

is partial if any two or more adjacent, non-overlapping instances of the tile form a hole, thus the

need to fill this hole with an extra block to ensure total tessellation of the matrix. This process can

be seen in Fig. 3.8, where we have a pattern that has a hole in the smallest hyper-parallelepiped

(b), so we add an extra block, obtaining the pattern from figure (c). The partition factor N is then

the number of blocks in a particular instance. as seen in Fig. 3.8.

We now present two additional theorems essential to our tessellation-based scheme. Proofs of this

theorems can be found in [9].

Theorem 2 If a tile T={T0, T1, . . . , TN} comprised of N blocks of size B tessellates the plane, each

block comprising the tile can be assigned an arbitrary distinct identifier and it will be a valid, and

the resulting tessellation is conflict-free partition for the entire plane.

Theorem 3 Given a tile T={T0, T1, . . . , Tn} comprised of N blocks of size B, each block assigned

an arbitrary distinct identifier, that tessellates a d-dimensional space, there exist a hyper-rectangle

smaller than N ∗ B0 × N ∗ B1 × · · · × N ∗ Bd−1 that is also a valid solution for the tessellation

problem and maintains the same assignments of identifiers to each element of the space when it is

used to tessellate it instead of the original tile.

45

1

1

1

1

1

1

1

1

2

2

2

2

3

3 3

3

3

3

3

3

Figure 3.9: In blue, access outline. In red, exclusion zone outline. Matching numbers of same

color are symmetrically opposite from center

A hyper-parallelepiped in a d-dimensional space can be defined by a set of d vectors, Vm. Once a

solution for the tessellation using a tile is reached, we take note of the base vectors of the hyper-

parallelepiped formed by the instances of the tiles. We use this vectors to find the smallest distance

in each canonical dimensions where the problem repeats itself. We will use this hyper-rectangle to

solve of bank mapping problem. This is what we call a super tile.

46

To find a set of valid base vectors, we first pick any point in the Data Domain and find the exclusion

zone as shown in figure 3.9. The exclusion zone is created by overlapping the all possible tiles a

particular point can belong to. This zone is the set of points that cannot have the same bank number

(ignoring block size) to achieve conflict free parallel access. The original cell is then taken as the

origin and cells on the periphery of the exclusion zone are then considered as possible ends for

the base vectors, starting from the new origin. Candidates are explored based on the norm of the

vector they would make. Smaller norm means the vector is considered first (1’s in the figure) since

it would make the smallest parallelepiped.

Once two vectors are found such that they make 4 non-overlapping instances of the tile, we then

proceed to check if there are any holes inside the formed parallelepiped and calculate the area. We

then select the best candidate based on which has the fewer number of holes and the smallest area.

If the best candidate has a hole, an extra block is introduced, increasing the total number of banks

by 1, and the process is repeated.

Super-tile construction

Once a solution without holes is found, we use the property of the tessellation that there exist a

spatial period in which the problem repeats itself not only on the direction of the base vectors, bu

also on the canonical dimensions.

To find said distance we calculate the LCM of all the vectors on each dimension. For the 2D case,

since we only have 2 vectors, if we divide the LCM for a certain dimension by the coordinate in

that dimension of a vector, we will get the smallest number of times we have to add itself to a

certain multiple of the other base vector to cancel the complementary component. This multiple is

also the value of the LCM divided by the corresponding component of the other vector.. Then it is

a simple matter of knowing whether to add the base vector or its complement based on whether the

47

coordinates have the same sign or different. Note that since we are working on an integer lattice,

all vectors have integer LCM and any linear combination will also be an integer vector.

This is better exemplified with an example. Refer to figure 3.3 where we have base vectors

uy = (−2, 2) and ux = (2, 3). The LCM for dimension d0 and d1 are 2 and 6 respectively. To

obtain the smallest vector in d0 we can make from any linear combination of the base vectors,

figure 3.10 (b), we divide the LCM in d1, this is 6, by uy(1) = 2 and ux(1) = 3 obtaining 3

and 2 respectively. This means we need 3 uy and 2 ux to obtain our desired distance. Now, since

uy(1) = 2 and ux(1) = 3 have the same sign, we just need to subtract 3 uy from 2 ux or vice versa,

instead of adding them to obtain the result. The modulus of the resulting vector will be the size of

the super-tile in d0. Note that doing 3 uy - 2 ux vector with either positive or negative coordinates

while -3 uy + 2 ux will yield the opposite sign, but since we care is about the modulus of said

vector it does not affect the result.

In a similar manner, to obtain the smallest vector in d1 we can make from any linear combination of

the base vectors, figure 3.10 (c), we divide the LCM in d0, this is 2, by uy(0) = −2 and ux(0) = 2

obtaining 1 both times. This means we need 1 uy and 1 ux to obtain our desired distance. Now,

since uy(0) = −2 and ux(0) = 2 have the different sign, we can add both directly to obtain our

result. Taking the modulus of the resulting vector as the size of the super-tile in d1.

48

uy

ux

-ux

-uy

(a) (b) (c) (d)

Figure 3.10: (a) base vectors and their complement. (b) Smallest horizontal vector made from a

linear combination of base vectors. (c) Smallest vertical vector made from a linear combination of

base vectors. (d) Super-tile

The previous can be summarized in the following equation:

ST = [(LCM2) ∗ |
V 1
1

V 2
1

| − sign(V 2
1 ∗ V

2
2) ∗ |

V 1
2

V 2
2

|

(LCM1) ∗ |
V 2
1

V 1
1

| − sign(V 1
1 ∗ V

1
2) ∗ |

V 2
2

V 1
2

|]

(3.3)

Where the subscript represents the vector, and the superscript the dimension.

If any of the components is zero, the size of the super-tile of the corresponding dimension is just

the non-zero component.

In theory, once the size of the super-tile is known, we can use the vectors of the parallelepiped

as a guide, and add non-overlapping instances of the final tile in each direction until a volume

equivalent to the hyper-rectangle calculated previously is filled. Assigning each corresponding

block of all the instances the same bank number, we store the sequence of bank assignments for all

49

elements of the hyper-cube in memory.

In practice, starting from an arbitrary cell in the super-tile, we can overlap a block and from each

of those cells, move following both base vectors and their conjugate allowing to wrap around, until

we have reached all possible points. This set of cells are assigned to one bank. The process is

repeated until all points in the super-tile are assigned to a bank.

The final tessellation result for the Memory Access Map in question can be seen in Fig. 3.11(a),

which we name it as a super-tile.

11

11

11

11

11

11

11

1

11

11

11

11

11

11

1

22

22

22

22

22

22

22

22

22

22

22

2222

22

33

33

33

33

33

33

33

33

33

33

33

3333

33

44

44

44

44

44

44

44

44

44

44

44

4444

44 55

55

55

55

55

55

55

55

55

55

55

5555

55

66

66

66

66

66

66

66

66

66

66

66

6666

66

(a)

(b)

Figure 3.11: (a) Bank mapping memory MemB . (b) Tessellation for an m×n matrix using a 4×6

super-tile. ©2016 IEEE

50

Super-tiles depicted in Fig. 3.11(a) will be used to tessellate the matrix as seen in Fig. 3.11(b). It

has the characteristic that is regular in all canonical dimensions. As such, to obtain memory bank

mapping, all one has to do is to calculate the relative position of a desired data element in the matrix

to its relative position inside the super-tile. This can be done by modulating each coordinate with

the length of the cube in the corresponding dimension. The bank mapping for memory location X

becomes an access to an d-dimensional memory in the form of:

Bank = MemB[X0 mod a0, . . . , Xd−1 mod ad−1] (3.4)

Given the regularity of the access of perfectly nested loops in stencil applications, the math can be

simplified even further by using accumulators and counters instead of costly modulo operation to

access all the dimensions of the super-tile every iteration.

Intra-Bank Offset

Due to the regularity of memory space tessellation with super-tiles, the problem of computing

intra bank offsets becomes an extension of the above memory bank mapping problem. First, for

the upper d-1 dimensions, we want to calculate number of elements belonging to a particular bank

that are in a d-2 dimensional space. This is, for 3-D matrix, we want to calculate how many

elements are of each bank first in a cube with base vectors [a2, 0, 0], [0, w1, 0], [0, 0, w0], then in a

rectangle with base vectors [0, 0, 0], [0, a1, 0], [0, 0, w0], and finally in a tessellating super-tile. The

maximum of these values for each dimension are then stored in memory. Once this is done, the

intra bank offset becomes a function of the intra super-tile offset and, 2 accumulators per access

for the 2D case. One to store the number of elements before it in the same row of super-tiles, and

51

another with the number of elements in the previous rows of super-tile.

OffsetAcck = MemO[X0 mod a0, . . . , Xd−1 mod ad−1]

+AccH + AccV

(3.5)

Similarly as with the bank access, one can use accumulators and counters instead of costly modulo

operation to access all the dimensions of the super-tile every iteration.

It is worth nothing that the internal offset of the super-tile stored in MemO can be carefully ar-

ranged to reduce memory waste. By keeping the lower offsets in the area of the super-tile that will

always be withing the bounds of the matrix under consideration, and assigning the higher ones to

the areas that represent the smaller area for the other dimensions, we can effectively reduce the

total memory waste. The highest offsets being located in the region of the super-tile less accessed.

In figure 3.12 we see the size of the matrix in one dimension is an integer multiple of the size of

the super-tile in dimension d0, then we will only incur in wasted memory in the last iteration of the

complementary loop. With this in mind, we can keep the lowest offsets in the area of the super-tile

that are always going to be withing the bounds, thus in the last iteration, such indexes will not be

accessed and we have reduced memory waste to 0. The order of the offsets in each of the zones

can be arbitrary and does not affect memory waste in any form.

52

0 1

2 3

Fill lastFill first

10

0 10 1

0 1 0 1

2 3

2 3 2 3

2 3 2 3

(a)

(b)

Figure 3.12: (a)Tessellation for an m x n matrix using a 4 x 6 super-tile. (b)MemO offsets. ©2017

IEEE

The final amount of memory overhead can be calculated by:

Overhead =
d−1
∑

i=0

((⌈
wi

ST i
⌉ − wi)×

∏

k!=i

wk) (3.6)

53

Results and Analysis

int A [...], A [...], ... , A [...]

for(i=1;i<W0-1;i++)

 for(j=1;j<W1-1;j++)

 {

 Reference 0 bank assignment

 ...

 Reference m-1 bank assigment

 Address generation for reference 0

 ...

 Address generation for reference m-1

 Memory access on N banks

 Data assignment for reference 0

 ...

 Data assignment for reference m-1

 Horizontal accumulator update

 Vertical accumulator update

}

0 1 N-1 Reference 0 = MemB [Acc0 %ST0][Acc0 %ST1]

Reference m-1 = MemB [Acc m-1 %ST0][Acc m-1 %ST1]

...
 d0 d1

if(Reference 0 ==0)

 ad(0)=MemO[Acc0 %ST0][Acc0 %ST1]+AccuH0+AccuV0;

 ...

else if(Reference 0 == N-1)

 ad(N-1) = MemO[Acc0 %ST0][Acc0 %ST1]+AccuH0+AccuV0;

data(0) = A [ad(0)];

 ...

data(N-1) = A [ad(N-1)];

if(Reference 0 ==0)

 output0=data(0);

 ...

else if(Reference 0 == N-1)

 output0 = data(N-1);

If (Acc0 %ST0 == ST0-1)

 AccuH0=AccuH0+C1

If (Acc0 %ST1 == ST1-1)

 AccuV0=AccuV0+C2

 d0 d1

 d0 d1

 d0 d1

 d0

 d1

Figure 3.13: Template of transformed code. ©2016 IEEE

To validate the performance benefits of our tessellation-based memory mapping scheme, we follow

the workflow of figure 3.4. The first process consists of inputting the memory access patterns of

all test benchmarks into a Matlab script which computes the bank assignment and relative offset

inside a super-tile for all memory locations. A Matlab script takes the information about the bank

and offset super-tile and automatically generates new transformed code in C. This transformed C

code is then used as an input to the Vivado HLS 2016.2 from Xilinx, which generates the HDL

files in Verilog. The software also automatically generates a Vivado HLx 2016.2 project with the

Verilog code already included. This project is synthesized and implemented. This software suite

54

is also the same tool used to report post implementation resource usage and power estimation. To

illustrate, we have listed a transformed code snippet in Fig. 3.13.

d ea b c

Figure 3.14: Test kernels used: (a) Denoise. (b) Bicubic. (c) Deconv. (d) Motion-LH. (e) Sobel.

©2016 IEEE

Five loop kernels with different access patterns are selected from a wide range of realistic ap-

plications, such as medical image processing and H.264 motion compensation, as shown in Fig.

3.14. In our experiments, we mainly focus on the effects brought by different access patterns. The

detailed experimental results are shown in Table 3.2 and Table 3.3. To compare, we also imple-

mented the GMP method [3] for the same set of benchmarks. To do a fair comparison the original

C code has the same structure for both sets of benchmarks, only calling different functions when

testing GMP and Tessellation. In all experimental runs, we turned on the loop pipelining setting

in Vivado and set the target throughout with the iteration interval (II) to be 1, which requires all of

the memory accesses in the same iteration to be in one clock cycle. For the hardware usage and

energy consumption, we chose the target device to be the XC7K160tffg676-3 Kintex-7 FPGA for

both Vivado HLS 2016.2 and Vivado Hlx 2016.2, and a bank size of 512 elements each in order

to use one full RAMB18E1 block with a data width of 32 bits plus 4 bits of parity in single port

mode. The results obtained can be seen in Table 3.2

55

Table 3.2: Resource utilization and clock period comparison

CP(ns) DSPs FFs LUTs Pow.(mW) Pipeline(#)

Denoise

GMP 2.1 0 254 438 754 8

Tess(auto) 2 0 367 646 790 11

Tess(man) 1.9 0 284 440 474 7

Improv. 4.76 0 / -44.48/ -47.48 / 4.77/

(%) 9.52 0 -11.81 ≈0 37.13

Bicubic

GMP 2.1 0 229 391 738 8

Tess(auto) 2 0 368 651 789 11

Tess(man) 1.9 0 276 437 491 7

Improv. 4.76 / 0 / -60.7/ -66.5/ 6.91/

(%) 9.52 0 -20.52 -11.76 33.45

Deconv

GMP 2.5 5 1320 1796 710 26

Tess(auto) 2.7 0 488 1010 570 11

Tess(man) 2 0 370 633 795 7

Improv. -8 100 / 63 / 43.76 / -19.71/

(%) 20 100 71.97 64.76 -11.97

MotionH

GMP 2.5 6 1783 2867 920 25

Tess(auto) 2 0 513 1136 1029 12

Tess(man) 2 0 426 725 951 7

Improv. 20 / 100 / 71.23 / 60.38 / -11.84/

(%) 20 100 76.11 74.710 -3.7

Sobel

GMP 2.5 9 3213 5792 1347 24

Tess(auto) 2.1 0 1082 2337 1595 13

Tess(man) 2.2 0 606 1416 1340 7

Improv. 16 / 100 / 66.32 / 59.65 / -18.41 /

(%) 12 100 81.14 75.55 ≈0

Average 7.5 / 60/ 19 / 10 / -12.3/

(%) 14.21 60 39.38 40.65 10.98

Using the memory waste formula for GMP [3] and equation 3.6 for the tessellation-based method,

56

we calculate and compare the overhead of the two methods. The results obtained are shown on

table 3.3.

Table 3.3: Memory waste comparison

Memory overhead (elements)

SD HD FHD WQXGA 4K

640x480 1280x720 1920x1080 2560x1600 3840x2160

Denoise

GMP 0 0 0 0 0

Ours 0 0 0 0 0

Improv. 0% 0% 0% 0% 0%

Bicubic

GMP 0 0 0 0 0

Ours 0 0 0 0 0

Improv. 0% 0% 0% 0% 0%

Deconv

GMP 0 0 0 0 0

Ours 0 0 0 0 0

Improv. 0% 0% 0% 0% 0%

MotionH

GMP 960 2880 0 3200 0

Ours 960 2880 0 32000 0

Improv. 0% 0% 0% 0% 0%

Sobel

GMP 3840 5040 6480 8000 6480

Ours 960 720 0 8320 0

Improv. 75% 85.7% 100% -4% 100%

Average 15% 17.1% 20% -0.2% 20%

57

From table 3.2 we see the tessellation-based method, when implemented directly from the HLS

code in general presents positive results, having a reduction of clock period by 7.5 % on average,

and reducing the usage DSPs completely, and LUTs, and FFs by 10 and 19% respectively . Only

having a small increment of power when compared out implementation of the GMP method [3].

This due to the simpler logic needed to calculate not only the Bank number but also the offset of

all the accesses by using the super-tile and accumulators instead of several complex arithmetic and

modulo operations.

The results from the Deconv kernel, where we actually get an increase in clock period from the

automated results, prompted a deeper analysis of the generated HDL code. We see that the results

from GMP are deeply pipelined, sometimes almost doubling the pipeline stages generated for the

tessellation based method. With this in mind, we implemented the tessellation-based method in

Verilog manually, following the scheme from figure 3.15 and adding one stage between the M:1

and N:1 muxes and two more, just before and after the memories for a total of 7 stages.

B2
B3

B1

N:1 M:1

Bank

Offset

if (Ch1==STh)

 Ch1=0

else

 Ch1=Ch1+1

if(AccumH1==MaxH)

 if (Cv1==STv)

 Cv1=0

 else

 Cv1=Cv1+1 if (Ch1==STh & AccumH1 != MaxH)

 AccumH1=Accum1H+Hcount

if (Ch1==STh & AccumH1==MaxH)

 AccumH1=0

if (Cv1==STv & AccumH1==MaxH)

 AccumV1=AccumV1+Vcount

Clk

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Bank

Supertile

Offset

Supertile

+

Out0

Mem 1

Mem 2

Mem 9

B5
B6

B8
B9

B4 B7

O2
O3

O1

N:1 M:1

O5
O6

O8
O9

O4 O7

Figure 3.15: Diagram for Tessellation-based method

58

Comparing the results from the hand-made Verilog code vs. the automated one, we still get a

reduction of the clock period but now doubling the average improvement, as well as increased

reduction of all comparison parameters.

59

CHAPTER 4: GRAPH BASED APPROACH FOR OPTIMAL MEMORY

BANKING IN STENCILS

This chapter is based on our previously published work in Juan Escobedo and Mingjie Lin, Graph-

Theoretically Optimal Memory Banking for Stencil-Based Computing Kernels, Proceedings of the

2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays DOI

10.1145/3174243.3174251 [1] and encompasses our graph based approach to find the optimal

partition factor and usable banking scheme for stencil kernels.

We will begin this chapter with a motivational example that will be used throughout this chapter

to demonstrate concepts and exemplify the contribution of our graph-based approach for stencil

kernels.

Motivational example

(a) (b)

for i = 1, n− 3

for j = 1, m− 3

S = f(Di,j , Di,j+1, Di+1,j , Di+1,j+1,

Di+2,j , Di+2,j+1, Di+2,j+2, Di+2,j+3,

Di+3,j , Di+3,j+1, Di+3,j+2, Di+3,j+3)

endif

endif

Figure 4.1: (a) Code snippet for a motivational example. (b) 12-point example stencil. [1] DOI

10.1145/3174243.3174251

60

The code snippet listed in Fig. 4.1(a) contains a computing kernel that produces the stencil depicted

in Fig. 4.1(b). The same stencil form has also been considered in [9]. Through directly following

the hyper-plane-based memory banking method from [3], we can obtain a partition factor of 14

with a block size of 1, i.e., totally 14 independent memory banks are required to ensure conflict-free

memory accessing. The question we ask is: What is the minimally required number of memory

banks that full parallelizes all memory accesses while still having a practical memory address

mapping scheme? With our graph-coloring-based methodology, we now believe that, 12 memory

banks are not only sufficient to guarantee conflict-free memory accesses but also can be formally

proven to be optimal.

Our key idea is to use optimal graph coloring to determine the optimal partition factor. Since the

problem can be arbitrarily large, doing an optimal coloring of the entire conflict graph is infeasible,

even for relatively small problem sizes given the NP-complete nature of the algorithm. To solve

this, we attempt to instead optimally only a small induced subgraph of the original entire memory

access conflict graph, and subsequently “stitching” this obtained much smaller obtained solution

to form the complete coloring solution of the entire conflict graph. In this paper, we generate

what we call the Extended Stencil Graph. This graph is the smallest graph we need to color to

obtain both the optimal partition factor and an usable coloring. The details of our algorithm and

the definitions of various graph-related concepts that are essential to our method can found in

Section 4. Specifically in Section 4, using the recently discovered theorems in graph theory, we

formally prove that the solutions obtained by our algorithm will be optimal.

61

A

AA

A

A

A

A

A

A

B

BB

B

B

B

B

B

B

CCC

C

C

CC

C

C

C

DDD

D

D

DD

D

D

D

E

EE

E

E

E

E

E

E

F

F

FF

F

F

F

F

F

F

G

G

GG

G

G

G

G

G

G

H

HH

H

H

H

H

H

H

I

I

II

I

I

I

I

I

J

JJ

J

J

J

J

J

J

K

KK

K

K

K

K

K

K

L

LL

L

L

L

L

L

L

Figure 4.2: Coloring of the data space. Black lines indicate where the pattern repeats. Light gray

areas are instances of the stencil. [1] DOI 10.1145/3174243.3174251

To illustrate, our final obtained solution is depicted in Fig. 4.2, where each cell denotes a mem-

ory location and its alphabetical label represents its allocated memory bank index. For clarity, we

omitted the edges in the figure. The geometry of this graph is the equivalent of considering each

memory location in the memory space a node and taking a single node (any node) in it as a refer-

ence along all nodes that also belong to any stencils of which the pivot node is part of, keeping their

relative positions. As we can see in figure 4.2, this coloring forms a pattern that can be repeated

in any direction, and can be used to cover a memory space of any size using only a fixed, and

more importantly: finite, coloring scheme. As we can see from Fig. 4.2, after memory banking is

finished, if we move stencil instances around (denoted with color blue, purple, and red), in each

instance, there is no memory conflict,

62

0 1 2 3

0

1

2

3

α = (1, 5)

0 1 2 3

0

1

2

3

α = (1, 7)

0 1 2 3

0

1

2

3

α = (1, 11)

0 1 2 3

0

1

2

3

α = (5, 1)

0 1 2 3

0

1

2

3

α = (5, 7)

0 1 2 3

0

1

2

3

α = (5, 11)

0 1 2 3

0

1

2

3

α = (7, 1)

0 1 2 3

0

1

2

3

α = (7, 5)

0 1 2 3

0

1

2

3

α = (7, 11)

0 1 2 3

0

1

2

3

α = (11, 1)

0 1 2 3

0

1

2

3

α = (11, 5)

0 1 2 3

0

1

2

3

α = (11, 7)

Figure 4.3: Sample hyper-plane families showing at least one conflict. [1] DOI 10.1145

3174243.3174251

We now intuitively explain why the hyper-plane-based approach alone may not produce the optimal

63

memory banking in this case. In Fig. 4.3, we have enumerated multiple possible hyper-plane

families. We found that, no matter what hyper-plane family we use, we always have at least one

conflict. This is also supported by the claim made in [9], where the authors studied this particular

stencil and found no linear skewing scheme in mod 12 that ensures conflict free partition of the

memory space. Also in [16], Cilardo et. al. re-stated that having a single hyper-plane family

might lead to missing certain solutions with a better partition factor. If we consider the memory

banking problem abstractly, all memory locations can be treated as multi-dimensional data points

scattered over a multi-dimensional space. All previous methods, including hyper-plane-based and

lattice-based [16], attempt to find the most suitable multi-dimensional planes to separate these data

points in order to avoid conflicts (or minimize them for a given bank number in the case of [16]).

But, these multi-dimensional planes are confined to be affine in mod n, therefore these approaches

may miss better solutions which are somewhat non-linear in nature.

Problem Formulation and Overall Solving Strategy

The central task of high-level synthesis is to transform a C-like software code segment into efficient

and high-performance hardware circuit description. Typically, within a given code segment, the

largest percentage of computation will be concentrated on iteratively executing a small-size com-

puting kernel, which often access multiple data items stored in one or several data arrays as shown

in Fig. 4.1. Mathematically, during each iteration, all the memory accesses within such a kernel

K can be defined as a set of m data points P = { ~A0, ~A1, . . . , ~Am−1}, where each data point ~A· is

stored in a d-dimensional array structure. The main objective of memory banking is to distribute all

array elements into multiple independent memory banks such that fully parallel memory accesses

can be enabled. In other words, during any iteration i, all accessed memory points in P will be

read from totally independent memory banks with zero memory reading conflicts. Mathematically,

64

the memory banking problem of an n-dimensional array can be defined as finding a pair of map-

ping functions f(~x) and g(~x), where f(~x) assigns a distinct memory bank and g(~x) generates its

corresponding intra-bank offset for a given data element, respectively. Clearly, an access conflict

between two memory references ~xj and ~xk occurs if f(~xj) = f(~xk), which means accessing the

same memory bank during the same iteration. Again, we assume single-port memory banks here.

As such, the memory banking problem under our consideration consists of two mapping problems:

memory bank mapping and intra-bank offset mapping.

Formally:

Problem 3 (Bank minimization) Given an l-level loop on the iteration domain D with m affine

memory references ~x0, ~x1, . . . , ~xm−1 on the same array, find a partition factor N such that:

Minimize : N = max0≤n<m{f(~xi)} (4.1)

s.t. ∀~xj , ~xk ∈ D, f(~xj) 6= f(~xk), 0 ≤ j < k < m

Eqn. 4.1 defines the objective function of memory partitioning, ensuring no access conflict between

any two references. After bank mapping, a data element in the original array should be allocated a

new intra-bank location. For correctness, two different array elements will be either mapped onto

different banks or the same bank with different intra-bank offsets. An intra-bank offset function is

valid if and only if:

∀~xj , ~xk ∈ D, ~xj 6= ~xk → (f(~xj), g(~xj)) 6= (f(~xk), g(~xk))

which means either

65

f(~xj) 6= f(~xk) or f(~xj) = f(~xk), g(~xj) 6= g(~xk)

Problem 4 (Storage minimization) Given an l-level loop on the iteration domainD with m affine

memory references ~x0, ~x1, . . . , ~xm−1 on the same array, find a partition factor N, find an intra-bank

offset mapping function g with minimum storage requirement S such that:

Minimize :

N−1
∑

j=0

max∀is.t.f(~xi)=j(g(~xi)) (4.2)

s.t. ∀~xj , ~xk ∈ D, ~xj 6= ~xk → (f(~xj), g(~xj)) 6= (f(~xk), g(~xk))

Eqn. 4.2 defines the objective function of partitioning with minimum storage overhead, ensuring

a valid partition.

Theoretically, one can optimally solve the memory banking problem by optimally coloring the

complete memory access conflict graph. Here, a memory access conflict graph is generated by

considering all accessed memory locations as nodes and adding edges between nodes that need to

be accessed together, forming a clique, during a particular iteration for all iterations in the iteration

domain. In other words, whenever two array elements Mi and Mj are accessed during the same

iteration, we consider them are conflicting and need to allocated into two different memory banks.

Here, we assume all memory banks to be single-ported for simplicity. After solving the optimal

single-port memory banking problem, it can be readily shown that multiple-port memory banking

can be solved by defective coloring scheme with the same strategy.

66

Figure 4.4: A small portion of the entire memory access conflict graph generated by the stencil in

Fig. 4.1. [1] DOI 10.1145/3174243.3174251

The biggest advantage of such graph-coloring-based approach is its generality, i.e., this method

imposes no limitation on the regularity of loop structure or the affiness of memory accesses. Un-

fortunately, in practice, this graph-based methodology is infeasible due to two critical issues. First,

for any realistic code segment of loop, the size the memory access graph quickly increases with its

associated array size, therefore simple too big for any existing graph coloring algorithm to handle

optimally. For example, for the 12-point stencil S shown in Fig. 4.1(b), even a tiny portion of its

complete memory access conflict graph becomes quite complex as shown in Fig. 4.4, thus infea-

sible to optimally color. Second, even if we can optimally solve this graph coloring problem, the

resulted memory address mapping will simply be too large, therefore completely impractical to

implement with hardware.

67

In this paper, we first limit our research scope to only the stencil-based kernel code. As such,

all memory accesses we consider will be affine, which means that the array index of each d-

dimensional memory access ~x = (x0, x1, · · · , xd−1)
T we consider is a linear transformation of a

l-dimensional iteration vector~i in the form of:

~x = Ad×l ·~i+ ~C

Ad×l =













a0,0 . . . a0,l−1

...
. . .

...

ad−1,0 . . . ad−1,l−1













, ~C =













a0,l
...

ad−1,l













where Ad×l is a coefficient matrix, ak,j ∈ Z is the coefficient of the j-th iteration vector on the

k-th dimension, and ~C is a a column vector with constants. Moreover, within each kernel K, the

relative displacements between all memory locations will be invariant throughout all iterations.

By focusing on only stencil-based computing kernel, we show in the following that the repeatability

of a complete memory access conflict graph can be exploited to produce a much smaller-sized

kernel expansion graph. As such, the optimally coloring the complete conflict graph can be greatly

reduced to optimally coloring a much smaller graph, which typically is only within two times of

the kernel size. Furthermore, the reduced graph coloring method also will only require a much

smaller memory address mapping, thus completely practical for hardware implementation. Maybe

most importantly, to the best of our knowledge, our graph-theoretic approach is the first work that

offers the provable optimality of its memory banking solutions.

68

(a) (b)

(c) (d)

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

A

A

B

B

B

C

C

C

[i,j] [i+1,j]

[i,j+1]

for i=1, 2

for j=1, 2

B[i,j]=A[i,j] + A[i+1,j]*A[i,j+1]

endif

endif

Figure 4.5: (a) Kernel code snippet. (b) Stencil S. (c) Extended stencil graph (ESG(S)). (d) Op-

timal coloring ESG(S). A, B, and C denote different colors. [1] DOI 10.1145/3174243.3174251

Before describing our algorithm in detail, we mathematically define several important concepts

in our methodology. Let G = (V,E) denote the memory access conflict graph, coloring G is the

process of assigning each vertex v ∈ V with a distinct color, such that no two adjacent vertices

connected by an edge e ∈ E, have the same color. In mathematics, if a graph G can be colored

with k colors, the graph is termed as k-colorable, and the smallest k for which the graph G is

69

k-colorable is defined as the chromatic number of G, denoted asχ(G). For example, in Fig. 4.5,

we present a tiny example of stencil-based kernel. Given the code snippet in Fig. 4.5(a), a 3-point

stencil depicted in Fig. 4.5(b) can be readily extracted. During each loop iteration, three memory

locations will be accessed in parallel. As such, we construct a clique with three conflict edges.

If we iterate through all iterations, we will obtain the total memory access conflict graph G0 in

Fig. 4.5(c). If we proceed with optimally coloring this conflict graph, it can easily computed that

only three colors needed to color this conflict graph, therefore G0 is 3-colorable and its chromatic

number is 3. Despite of the elegance of solving the small problem in Fig. 4.5, unfortunately,

it is well-known that even determining if a graph G is k-colorable for k ≥ 3 proves to be NP-

complete [27]. This makes solving a realistic large-scale memory banking problem infeasible.

(a) (b)

A

A

A

B

B

B

C

C

C

K5

K3

Figure 4.6: (a) A 5-node clique K5. (b) A perfect graph of 9 nodes. [1] DOI 10.1145/

3174243.3174251

In addition, two graph theory concepts are essential to the development of our memory banking

algorithm. First, in graph theory, a clique is a subset of vertices of an undirected graph such that

every two distinct vertices in the clique are adjacent; that is, its induced subgraph is complete.

Cliques are one of the basic concepts of graph theory and are used in many other mathematical

70

problems and constructions on graphs. One example of 5-node clique K5 is shown in Fig. 4.6(a).

It can be noted that, within our memory conflict graph, any instance of one stencil will clearly form

a clique because all nodes inside this particular stencil instance will conflict with each other, i.e.,

they can not be allocated into the same memory bank in order to avoid any access conflict. Second,

a perfect graph is a graph in which the chromatic number of every induced subgraph equals the size

of the largest clique of that subgraph. One example of 9-node perfect graph is depicted in Fig. 4.6

(b) and shows a lot similarity with a typical extended stencil graph in topology. One important

consequence of a perfect graph is that its optimal coloring can be solved in polynomial time. As

shown in Fig. 4.6(b), all 9 nodes in the perfect graph G are colored optimally with exactly three

colors A, B, and C, hence χ{G} = 3. More importantly, when a graph proves to be perfect, we

can be sure its chromatic number will be equal to its largest clique number. Note that in Fig. 4.6

(b), G has six equal-sized cliques, each of which consists of 3 nodes.

One crucial observation in this paper is that, the stencil-induced memory access conflict graph is

formed by combining many cliques corresponding to all loop iterations. The key to the success

of our memory banking algorithm is to exploit the special graph-theoretical property of our target

memory access conflict graph while avoiding the NP-hardness of optimally coloring a large-sized

complete memory access conflict graph.

71

Synthesize

Kernel(K) ESG(K) Opt. Color WP?

Augment

SuperTile

Generate C
Generate Ver.

Yes

No

Figure 4.7: Flow diagram of our algorithm. [1] DOI 10.1145/3174243.3174251

Fig. 4.7 presents the overall flow diagram of our graph-based algorithm. Given a stencil-based

computing kernel S, we first construct its Extended Stencil Graph or ESG(S). We then opti-

mally color this ESG(S) using the Matlab toolbox from [28] and obtain its chromatic number

χ(ESG(S)). If χ(ESG(S)) equals to the number of nodes in the given stencil S, i.e., the ex-

tended stencil graph ESG(S) is perfect, we complete our memory banking scheme by allocating

each array element to a distinct memory bank denoted by a distinct color. In Section 4, we will

prove that not only this coloring scheme is optimal but also the resulted coloring results can be re-

peated to cover the whole memory array space. Otherwise, if χ(ESG(S)) is larger than the stencil

size, i.e. ESG(S) is not perfect, we will show the the entire conflict graph can be colored with

that many colors, but we make no claims on the existence of an usable mapping function we will

start to modify the given stencil by adding more nodes. During each iteration, we treat the mod-

ified stencil shape as a new one and repeat the above steps. This iterative process will stop if the

resulting kernel graph becomes perfect. More details about how we iteratively modify the stencil,

why this algorithm is guaranteed to terminate, and why the resulting solution will be optimal will

be further discussed in Section 4.

72

(a) (b) (c) (d)

Stencil

(S)

Extended Stencil

(ES(S))

Extended Stencil Graph

(ESG(S))

Optimal Coloring

A

B

B

B

C

C

C

Pivot Node

Figure 4.8: (a) An 3-point stencil example S. (b) Its extended stencil ES(S). (c) Its extended

stencil graph ESG(S). (d) Optimal coloring of ESG(S). [1] DOI 10.1145/3174243.3174251

Clearly, the key component in our algorithm is to construct the expanded stencil graph ESG of

a given kernel-induced stencil. This construction consists of two steps. First, we construct an

expanded stencil by overlapping multiple stencil instances that intersects or touches a fixed point.

For example, exactly three instances of the given stencil depicted in Fig. 4.8(a) forms an expanded

version of stencil in Fig. 4.8(b). Subsequently, by selecting all nodes in this expanded stencil, we

can readily induce a subgraph from the overall memory access conflict graph. In graph theory, an

induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph

and all of the edges connecting pairs of vertices in that subset. By including all necessary conflict

edges, we then construct a graph, which we termed as the extended stencil graph (ESG(S)) in

Fig. 4.8(c). Finally, we perform the optimal coloring on ESG(S) in order to obtain the coloring

of each node. In the next section, we will formally prove that (1) the chromatic number of an

extended stencil graph equals the the chromatic number of a total memory access conflict graph

and (2) the obtained coloring can be repeatedly utilized to optimally color all memory space. Note

that both results are significant because the algorithm listed in Fig. 4.7 not only can be proven to

be optimal but also, because typically the size of expanded stencil graph is much small than the

73

complete memory conflict graph, the optimally memory banking problem can be efficiently solved.

Proof of Algorithmatic Optimality and Hardware Implementation Efficiency

Our optimal memory banking methodology largely depends on effectively manipulating memory

conflict graph through exploiting its special properties. In this section, we formally prove two key

theorems that ensure the optimality of our memory banking solutions and the practical guarantee

of hardware efficiency. Specifically, we will prove that, for any given kernel stencil, our method-

ology will always find the optimal memory banking scheme with the smallest possible number

of memory banks. Furthermore, we will prove that, for any given kernel stencil, we only need

to optimally color an extended stencil graph, only a small portion of the overall memory access

conflict graph, and the complete graph coloring problem can be solved by repeatedly "stamping"

this small coloring throughout the overall conflict graph. This ensures that the required memory

banking indexes and offsets can be computed efficiently.

Minimum Memory Bank Number

When constructed as in Section 4, a given extended stencil graph ESG has three important prop-

erties. First, any given ESG has a pivot node in the center, which a number of stencil instances

surround. Moreover, by definition, the number of stencil instances equals the number of nodes in a

given stencil. Second, an expanded stencil includes all possible scenarios how two stencil instances

intersect. This is important because this loosely but intuitively explains why optimally coloring an

expanded stencil graph, an induced subgraph, infers optimal coloring the entire memory access

conflict graph. Third, graphically, an expanded stencil graph combines multiple subgraphs, each

of which is formed by an individual stencil. In fact, the induced conflict subgraph generated by

74

each stencil is a graph clique. Moreover, because each stencil contains the same number of nodes,

all cliques found in an extended stencil graph are equal in size. This property turns out to be critical

to our optimality proof.

Following the steps in Fig. 4.8, it is clear that a complete memory access conflict graph can

be readily partitioned as a number of extended stencil graphs. This is expanded and proved in

section 4. Furthermore, these extended stencil graphs are connected with each other through

stencil-induced conflict graph cliques. Without loss of generality, let us consider two individ-

ual extended stencil graphs ESGa and ESGb that joined at a stencil-induced clique Kn, where n

is the clique size. According to the theorem in [29], in general, for graphs G1 and G2, χ(
G1+G2

Kn
) =

max{χ(G1), χ(G2)}, where operation χ(·) denotes finds chromatic number and G1+G2

Kn
denotes a

joined graph of G1 and G2 at a complete graph Kn. Fortunately, in our case, a clique generated

by a n-node stencil is trivially a complete graph Kn. Additionally, two individual extended stencil

graphs ESGa and ESGb under our consideration is isomorphic, thus χ(ESGa = χ(ESGb) = c.

As such, we conclude that χ(ESGa+ESGb

Kn
) = max{χ(ESGa), χ(ESGa)} = c. In other words,

expanding one extended stencil graph through joining at a stencil-induced clique will preserve the

chromatic number of the original extended stencil graph. Therefore, by continuously expanding a

starting extended stencil graph, we can cover the whole memory space and reconstruct the entire

memory access conflict graph. Because we know that the starting chromatic number is optimally

obtained by coloring a extended stencil graph, the inferred chromatic for the entire conflict graph

must also be optimal.

Graph Repeatability

Previous section proves that, given a stencil S, the chromatic number of its extended stencil graph

χ(ESG(S)) equals to the optimal partition factor of the entire memory access conflict graph, i.e.,

75

the minimum number of independent memory banks are needed to ensure conflict-free memory

accesses throughout all loop iterations. However, this result doesn’t by itself provide a valid and

hardware-efficient memory address mapping. In the following, we prove by construction that the

optimal coloring of an extended stencil graph repeats itself across the entire memory domain,

thus providing a very efficient memory address mapping scheme if the considered extend stencil

graph is perfect. Otherwise, we need to augment the original stencil by adding more nodes until

the induced extended stencil graph becomes perfect. We will prove that such augmentation will

terminate and always have an optimal solution.

As mentioned in Section 4, an extended stencil graph is formed by overlapping multiple stencil

instances. By definition, each extended stencil graph ESG has a center point p. In addition, the

conflict graph of each stencil constitutes a clique and the coloring of each node contained in this

clique is unique. We now show that, a valid optimal coloring of a given ESG can be readily

expanded in all directions with repeated patterns. Clearly, if this is true, we only need to store a

small-size coloring in order to infer every node’s color assignment.

76

ESG

ESG ESG

ESG

ESG′

ESG′

ESG′

(a) (b)

(c) (d)

(e)

AA

A A

BB

BB

BB

Figure 4.9: (a) Instance of the ESG with two cliques colored.(b) Instance of the gluing ESG

(ESG’) with the coloring reversed.(c) continuous sequence ESG-ESG’ESG- with repeated col-

oring. [1] DOI 10.1145/3174243.3174251

In Fig. 4.9, we consider one extended stencil graph ESG. Pick one of its cliques and call its

particular coloring B. By definition, B assigns a distinct color to all the nodes in this clique.

In particular, its previously defined "pivot" node is colored in orange, which will be shared by

the other cliques, generating a partial coloring. Note that, even after fixing its "pivot" node with a

specific color, any given n-size clique will still has (n−1)! possible valid colorings. Without loss of

77

generality, let us select exactly one of the other n−1 nodes from this fully colored clique withB and

define this to be a "link" node colored in green. Now consider another extended stencil graph ESG′

and again choose two cliques in it. Note that these two cliques may not be the same ones considered

previously. One of these cliques can be chosen such that it has the same coloring B, but its "link"

node is now the "pivot" node of this particular ESG as seen in Fig.4.9(b). If the ESG is perfect,

then all the cliques must have all the colors, so there must exist another clique in ESG’ such that it

contains the "pivot" node, keeping the corresponding green color in that particular location, and can

keep the partial coloring from the clique in ESG plus (color that particular node in orange). Let’s

call this coloring of a clique "A". This is one of the (n-1)! previously mentioned valid colorings.

This arrangement can be seen in 4.9 (c). We can then use coloring "A" to color the original partially

colored clique from ESG since it preserved that partial coloring, fig. 4.9 (d). From this it follows

that we can "glue" ESG with ESG’ by an induced subgraph that includes the maximum clique

colored "B". Let’s call the resulting graph <ESG+ESG’>. Since both graphs are perfect with the

same chromatic number, and we glue them by an induced subgraph that includes a maximum clique

then <ESG+ESG’> is also perfect and retains the same chromatic number. We can now repeat

the procedure but now gluing <ESG+ESG’> to ESG by an induced subgraph that includes the

maximum clique colored "A", generation <ESG+ESG’+ESG>, which again retains perfectness

and the chromatic number for the aforementioned reasons. We can continue doing this indefinitely.

Since we only need one intermediate gluing graph ESG’ before we can reuse the coloring of ESG,

then it is obvious that the coloring has a maximum distance until it repeats. In the worst case, this

distance is the width of the ESG in that particular direction.

78

(a) (b) (c) (d)

(e) (f)

1

1
1

1

1

1

1

11

2

2
2

2

2

22

3
3

3

3

33
A

B C

Figure 4.10: (a) An example stencil. (b) Extended stencil graph of the sample stencil. (c) ESG

with valid coloring for one clique. (d) Glue extension graph ESG′ with two cliques colored. (e)

ESG with valid colorings for two cliques (f) Glued chain ESG − ESG′ − ESG for the sample

stencil. [1] DOI 10.1145/3174243.3174251

This idea can be seen in more detail with a real stencil in figure 4.10.Here (a) is a three point stencil

with nodes A,B, and C. (b) Shows the ESG of the sample stencil. In (c) we see a partial coloring

of the ESG with labels 1,2 and 3. Only the red clique is fully colored. The blue clique only has

node C colored. The center node of the ESG is the node shaded in orange, is assigned label 3, and

the "Link" node in green, is assigned label 2. Now, in (d) we see another instance of the ESG.

The only clique where the coloring from Red will make the "Link" node to be the "pivot" node is

the clique in brown. Since all cliques must have all coloring labels due to the chromatic number

of the graph being equal to the number of nodes in the stencil, then it follows that there must exist

a clique such that it has node C labeled 3 . Note that we have two options ((N-1)! with n=3), one

with label 2 in position B, and another with the label 2 in position A, light blue. Only placing label

79

2 in position A allows for a valid coloring of the entire ESG, generating the coloring from the light

blue clique. We can use this coloring to complete the partial coloring of the blue clique, since the

ESG includes all interactions of a stencil with another (e). Finally in (f) we can see how we can

indefinitely glue the graphs (by means of ESG’) while keeping the same chromatic number and

with a repeating coloring. On top of that, since this graph is perfect, then there exists a polynomial

time algorithm to color it.

... ...

Figure 4.11: Stencil (black) and the circumscribing square (blue). Nodes in gray are potential

candidates to be added. [1] DOI 10.1145/3174243.3174251

If, for a given stencil S, its extended stencil graph ESG(S) is not perfect, i.e., χ(ESG(S)) >

w(S), where w(S) denotes the size of the stencil S. Unfortunately, the complete coloring of the

entire memory access conflict graph can not be obtained by repeating the optimal coloring of the

extended stencil graph. In this case, we have to iteratively add nodes to augment the original

stencil until the resulting ESG of this modified stencil becomes perfect. To do this, we consider

the smallest m × m circumscribing rectangle of the original stencil, perform an iterative search,

and consider all Ck
n possible combinations of added nodes from inside the square, as seen in figure

4.11, where n is the number of nodes in the square but not in the stencil and for all k from 1 to n

in incremental order to find a solution with the best chromatic number (and associated number of

80

added nodes) that produces a perfect extended graph. Since we have a finite candidate solutions,

this algorithm will terminate. However, why this search will result the optimal solution, i.e, the

minimum number of memory banks to guarantee conflict-free coloring and periodic mapping,

remains to be proven.

Data: Stencil(P)

Result: Periodic coloring(PC)

CS← smallest m×m square such that P ⊂ CS ;

TN← CS - P;

for i ∈ 1...|TN | do

forall EN s.t. EN ⊆ TN and |EN |==i do

EG← EG(P+EN);

if x(EG)==|P |+i then

Terminate and return Optimal Coloring(EG);

end

end

end

Figure 4.12: Node addition algorithm. [1] DOI 10.1145/3174243.3174251

Fig. 4.12 presents the algorithm that performs the above iterative search. Note that if we add

more nodes (and the corresponding edges) the original graph, with the original stencil, becomes a

common induced subgraph. This means that if a valid periodic coloring for the new graph is found,

then this solution will also solve the desired periodicity coloring scheme desired for the original

one. We now prove that this algorithm results in the optimal partition factor. The following proof

consists of two steps.

81

First we prove that this search algorithm terminates. Because the circumscribing square contains

finite number of nodes, we only have a finite number of possible candidate nodes sets to consider.

Additionally, the final square augmented stencil is guaranteed to produce perfect extended stencil

graph. This is because that any m×m square is always going to generate a perfect ESG since the

Rook’s graph has m2 and can be directly mapped to an order m2 Latin Square where every instance

of the m×m stencil is surrounded by 3 or more same sized neighbors to form the aforementioned

Latin square. One example of this condition is seen in the Sudoku game where 3×3 stencils form

a larger 9×9 grid where each row and column has all the 9 symbols without repetition, but more

importantly, each of the non-overlapping 3×3 squares has a permutation the 9 symbols, making

it also a Gerechte square. Thus we know that since the geometry and maximum amount of nodes

(and the largest number of colors) needed to obtain a periodic coloring for a given arbitrary stencil

is the smallest circumscribing square that contains the stencil, then we can ensure that we will find

at least one solution which is the all the nodes in the circumscribing square itself. In other words,

we will always find a solution in the circumscribing square. This will also provide the upper limit

to the number of colors needed to generate a periodic coloring.

Second, we argue optimality because of the incremental nature of the search in the solution space.

We first try all sets of added nodes with cardinality 1 and increase it until we find an answer that

generates a perfect Extended graph. We need to show that no better solution can be obtained by

selecting nodes outside of it. We proceed to demonstrate by contradiction, using the properties of

the Extended graph, that no such node exist that selecting it, will provide a better solution in terms

of chromatic number. Assume the best solution found Si has i added nodes from the circumscribing

square with chromatic number k. Now assume that there exists a node(or set of nodes) outside the

circumscribing square such that considering it would yield a periodic coloring with i − 1 added

nodes and k − 1 colors. Given the vertex-transitive property of Rook’s graphs, and the fact that

this property is retained when the reduced graph is perfect, one can switch the relative position of

82

the selected node(s) with nodes inside the circumscribing square and obtain an isomorphic graph

using nodes entirely inside said region. Thus, since the search is done incrementally, considering

all combinations of increasingly large sets of nodes inside the square, if such solution with i − 1

nodes and k − 1 colors exist, it must have been considered when exploring the previous sets

considering only points inside the circumscribing square.

Data Reuse

Accessing off-chip data is a very costly operation. While reading on-chip data can take just a

few cycles with minimum latency, off-chip communication comes at the cost of very high latency

and possibly hundreds of wasted clock cycles. Luckily, stencils have the peculiarity that in most

cases part of the data accessed on one iteration will be needed in the next. This allows for a very

straightforward data reuse scheme. To add data reuse ot our graph-based approach we first need to

define two concepts widely used when performing data reuse analysis.

The first concept is reuse distance. Reuse distance is a metric of temporal locality that expresses

in how many iterations the data accessed by one of the memory accesses in a stencil will be reused

by another, if any.The second one is the data reuse graph, which is used to easily encode the reuse

distances. The data reuse graph or DRG is a directed acyclic graph or DAG, meaning a graph where

the edges connecting the vertices have a defined starting and ending point and it is impossible to

follow the edges to from a path that returns you to the original starting vertex. The DRG is a

weighed DAG where the weights represent the reuse distance between the memory accesses. If we

use the code and associated stencil from figure 4.5 (b), we will obtain the DRG from figure 4.13.

83

(a) (b)

[i,j][i,j]

[i+1,j][i+1,j]

[i,j+1][i,j+1]

1

n

n+ 1

Figure 4.13: (a) Stencil clique. (b) DRG for the stencil where n is the problem size in the inner

most loop.

One of the key properties of the Data Reuse Graph is the fact that it is edge transitive. This means

that for any given graph G there exists a transformation such that, given any two edges e1 and e2 of

G, there is an automorphism of G that maps e1 to e2, where automorphism is a form of symmetry

in which the graph is mapped onto itself while preserving the edge - vertex connectivity [30].

In other words, under certain transformation, we can remove some edges while still maintaining

reachability from one node to the other. This operation is called transitive edge reduction and will

be the key to maintain the properties of the original ESG when working with the simplified stencil

while allowing for a reduction of the clique size and thus partition factor.

We see an example of this process in figure 4.14. In (a) the 5-point stencil under considerations.

Analyzing the geometry of this stencil and given the loop bounds, one can construct the DRG seen

in (b). After performing the transitive edge reduction, we obtain the graph from 4.14(c). Note that

any node reachable from any other one is still reachable and the path length (sum of the weight of

the edges in the path) is the same as the optimal path in the original DRG.

84

(a) (b) (c)

(d) (e) (f) (g)

Pivot A

B

B B

CC

C

111 1

m

m
2

m− 1

m− 1

m− 1

m− 1m+ 1

m+ 1
2 ·m

i, ji, ji, j

i+ 1, ji+ 1, j

i+ 1, j

i, j + 1i, j + 1i, j + 1 i, j − 1i, j − 1i, j − 1

i− 1, ji− 1, j

i− 1, j

Figure 4.14: (a) Original stencil. (b) DRG. (c) DRG after edge reduction. In black are the edges

independent of the the problem size. (d) Simplified stencil. Nodes without an incoming edge. (e)

ES for the reduced stencil. (f) Corresponding ESG. (g) Colored ESG. Note we now only need 3

colors instead of the original 5.

Fig.4.15 presents the overall flow diagram of our graph-based algorithm when including data reuse.

Given a stencil-based computing kernel S, we first perform a reuse analysis by generating the DRG

of the stencil and running a transitive edge reduction algorithm on it. The remaining edges will

be potential candidates to be used as reuse buffers. For simplicity, we use FIFO buffers that might

even ve able to be implement with registers instead of using any additional hardware similar to

the idea presented in [31] and [32]. Because we want to produce a memory system that has a size

independent of the problem size, we only consider those edges which weight is not dependent on

85

the problem size. The weight or reuse distance is determined by the way the loops translate the

stencil instance along the data domain. Once we have selected the edges that will be used as reuse

buffers, we proceed to eliminate any nodes at then endpoint of any of those edges since they will

reuse data from other nodes they do not have to be considered for the parallel banking scheme. The

remaining nodes and all the edges between them will be used in the same as shown in previous

sections to construct and color the Extended Stencil Graph or ESG(S) of this simplified stencil.

A detailed example of this process can be seen in figure 4.14.

Stencil
Reuse

Analysis

Edge

Reduction

Obtain ESG Optimal Coloring
Is ESG

WP?

Augment

Obtain Bank/Offset

LUT

Generate HLS

code

Generate Verilog Code
Synthesize and

implement

Yes

No

Figure 4.15: Flow diagram of our algorithm.

To illustrate the advantages of including data reuse and how it improves the partition factor we will

consider the 12-point stencil seen in figure 4.16 where we can also see the final 4-bank solution

obtained when incorporating data reuse. Two instances of the stencil, outlined in blue and purple

are shown. Elements in dark gray are accessed every iterations while elements in dark gray are

obtained from the reuse data scheme.

86

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Figure 4.16: Coloring of the data space. Dashed black lines indicate where the pattern repeats.

Gray areas are instances of the stencil. Light gray are memory accesses taken care of by the data

reuse scheme. Dark gray need to be accessed in parallel each clock cycle

We can see that now we can achieve conflict-free parallel memory access with only 4 banks instead

of the original 12. And not only that, but also the geometry of the repeating coloring has been

reduced considerably from what originally was aa 6 x 6 square with 36 elements seen in Figure

4.17 (a), to a much smaller 1 x 4 rectangle as seen in Figure 4.17 (b). A reduction of 6x the number

of elements. This will mean much smaller and simpler additional circuitry and possibly lower

memory overhead.

87

A

A

A

A

B

B

B B

C

C

C

C

D

D

D

DE

E

E

F

F

F

G

G

G

H

H

H

I

I

I

J

J

J

K

K

K

L

L

L

(a)
(b)

Figure 4.17: (a) Original repeating coloring for the 12-point stencil with 36 elements in a 6x6

square and 12 banks. (b) Repeating coloring for the 12-point stencil with data reuse using only 4

elements in a 1x4 rectangle and 4 banks

Modeling Multi-port memories

The method of obtaining the ESG of an stencil in order to obtain the optimal partition factor and a

usable coloring scheme can be extended to use optimal defective coloring in order to model multi-

port memories. This allows for a solution with a smaller partition factor to ensure parallel access,

reducing the routing logic needed which in turn improves resource utilization and clock period

given the smaller computational logic.

Defective coloring allows for up to d adjacent nodes to be assigned the same color and still consider

it to be a valid coloring, where d is a parameter called defect factor of the coloring. It is easy to

see how can one model multiport memories using defective coloring. At any given moment, only

88

up to d access to a certain memory bank are performed. If the memory bank has d ports then it can

handle all requests without having to serialize the requests.

Using defective coloring to color for any given graph is equivalent to reducing the degree of each

vertex by up to a factor of d. This is where the reduction of the chromatic happens. By removing

edges, we are not only probably reducing the maximum degree of all nodes, but also possibly

reducing the size of the maximum clique. Both of which influence the chromatic number.

Given the added complexity of implementing an optimal defective coloring scheme over a tradi-

tional optimal coloring algorithm and to maintain coherency between both approaches (optimal

coloring and defective coloring), we instead do some preprocessing to the original stencil before

proceeding as normal. This preprocessing consists in eliminating up to d edges from the original

stencil graph, effectively reducing the size of the maximum clique (all stencils originally start as

complete graph so removing an edge reduces the size of the maximum clique). It is in this step

that we encode the defectiveness of the coloring. Once this is done we proceed to obtain the ESG

of the modified stencil as usual. Unlike with the original ESG, now it is possible that not all nodes

are connected to the pivot node. We use this to our advantage and consider the induced subgraph

(ISG) of the ESG that contains only the nodes connected to the pivot node (this to maintain the

requirement that the pivot node is connected to all other nodes, which in turn translates to the pivot

node being the only node with a particular color). We proceed to optimally color this ISG. Because

the nodes that weren’t considered are not connected to the pivot node, and the pivot node is the

only node with a particular color, it is safe to color said nodes the same color as the pivot. The

analysis that follows is exactly the same as with the original stencil. If the chromatic number of

the graph matches the maximum clique, then we have proven that it is possible to color the entire

data domain using that coloring scheme.

In figure 4.18 we can see an example of this process. In (a) we consider an L shaped 3-element

89

stencil. (b) shows the modified stencil using a defect factor of 1. Eliminating up to d edges from

all nodes in a random manner. (c) Shows the new ESG of the modified stencil constructed in the

regular fashion. This modified ESG contains all the possible interleaving of the modified stencil,

which has the defect factor encoded directly into it, with any other. (d) Shows the ISG considered

where some nodes that are not connected to the picot node are not included in the coloring. Once

this is done, (e) shows how we complete the coloring assigning the color of the pivot node to the

originally excluded nodes. It is easy to see that the maximum clique of the ESG in (e) is 2, and that

the chromatic number is also 2, so it meets the requirement for it to be used to cover the entire data

space. (f) Shows how such coloring can be extended to cover the entire data space. At any point,

selecting 3 nodes in the shape of the stencil will access any bank up to d times, ensuring parallel

access.

90

(a) (b)
(c)

(d) (e)

(f)

1

11

1

1

11

1

1

11

1

1

11

1

1

11

1

1

11

1

2

2

2 2

2

22

2

2

2

2

2

2

2

22

Figure 4.18: (a) Original 3-element stencil forming a complete graph. (b) Modified stencil remov-

ing up to d edges from each node, with d=1. (c) ESG of the modified stencil. (d) Colored induced

subgraph of the ISG considering only the nodes connected to the picot point. (e) Colored full ESG.

(f) Linkage of several ESG to cover the entire data domain with the defective coloring

91

Results and Analysis

To validate the performance benefits of our graph-based memory banking scheme, we start with

inputting the memory access patterns of all test benchmarks into a Matlab script which computes

the bank assignment and relative offset inside a super-tile for all memory locations. A Matlab

script takes the information about the bank and offset super-tile and automatically generates new

transformed code in C. This transformed C code is then used as an input to the Vivado HLS 2016.2

from Xilinx, which generates the HDL files in Verilog. The software also automatically generates

a Vivado HLx 2016.2 project with the Verilog code already included. This project is synthesized

and implemented. This software suite is also the same tool used to report post implementation

resource usage and power estimation. To illustrate, we have listed a transformed code snippet in

Fig. 4.19.

int A [...], A [...], ... , A [...]

for(i=1;i<W0-1;i++)

 for(j=1;j<W1-1;j++)

 {

 Reference 0 bank assignment

 ...

 Reference m-1 bank assigment

 Address generation for reference 0

 ...

 Address generation for reference m-1

 Memory access on N banks

 Data assignment for reference 0

 ...

 Data assignment for reference m-1

 Horizontal accumulator update

 Vertical accumulator update

}

0 1 N-1 Reference 0 = MemB [Acc0 %ST0][Acc0 %ST1]

Reference m-1 = MemB [Acc m-1 %ST0][Acc m-1 %ST1]

...
 d0 d1

if(Reference 0 ==0)

 ad(0)=MemO[Acc0 %ST0][Acc0 %ST1]+AccuH0+AccuV0;

 ...

else if(Reference 0 == N-1)

 ad(N-1) = MemO[Acc0 %ST0][Acc0 %ST1]+AccuH0+AccuV0;

data(0) = A [ad(0)];

 ...

data(N-1) = A [ad(N-1)];

if(Reference 0 ==0)

 output0=data(0);

 ...

else if(Reference 0 == N-1)

 output0 = data(N-1);

If (Acc0 %ST0 == ST0-1)

 AccuH0=AccuH0+C1

If (Acc0 %ST1 == ST1-1)

 AccuV0=AccuV0+C2

 d0 d1

 d0 d1

 d0 d1

 d0

 d1

Figure 4.19: Template of transformed code. [1] DOI 10.1145/3174243.3174251

92

Six loop kernels with different access patterns are selected from a wide range of realistic applica-

tions, such as medical image processing and H.264 motion compensation. In our experiments, we

mainly focus on the effects brought by different access patterns. The detailed experimental results

are shown in Table 4.1 and Table 4.2. To compare, we also implemented the GMP method [3] for

the same set of benchmarks and incorporated the results from [18] for the common ones (Bicubic,

Deconv,Motion H, and Sobel). To do a fair comparison the original C code has the same structure

for both sets of benchmarks, only calling different functions when testing GMP and our method.

In all experimental runs, we turned on the loop pipelining setting in Vivado and set the target

throughout with the iteration interval (II) to be 1, which requires all of the memory accesses in

the same iteration to be in one clock cycle. For the hardware usage and energy consumption, we

chose the target device to be the XC7K160tffg676-3 Kintex-7 FPGA for both Vivado HLS 2016.2

and Vivado Hlx 2016.2, and a bank size of 512 elements each in order to use one full RAMB18E1

block with a data width of 32 bits plus 4 bits of parity in single port mode. The results obtained

can be seen in Table 4.1

93

Table 4.1: Resource utilization and clock period comparison. [1] DOI 10.1145/ 3174243. 3174251

Bank # CP(ns) DSPs FFs LUTs Pow.(mW) Pipeline(#)

Denoise

GMP 4 2.1 0 254 438 754 8

Ours 4 1.9 0 284 440 474 7

Improv. (%) 0 9.52 0 -11.81 ≈0 37.13 12.5

Bicubic

GMP 4 2.1 0 229 391 738 8

Trace 4 3.66 0 212 184 N/R N/R

Ours 4 1.9 0 276 437 491 7

Improv.(%) 0 9.52 0 -30.18 -137.5 33.45 12.5

Deconv

GMP 5 2.5 5 1320 1796 710 26

Trace 5 3.37 10 383 541 N/R N/R

Ours 5 2 0 370 633 795 7

Improv.(%) 0 20 100 3.39 -17 -11.97 73

MotionH

GMP 6 2.5 6 1783 2867 920 25

Trace (Motion L) 6 3.31 6 392 425 N/R N/R

Ours 6 2 0 426 725 951 7

Improv.(%) 0 20 100 -8.67 -70.59 -3.7 72

Sobel

GMP 9 2.5 9 3213 5792 1347 24

Ours 9 2.2 0 606 1416 1340 7

Improv.(%) 0 12 100 15.72 -33.71 ≈0 70.8

12-Point

GMP 14 2.8 12 5108 9116 1687 34

Ours 12 2.4 0 806 2159 1895 7

Improv. (%) 14.3 14.3 100 84.22 76.3 -12.3 79

Average(%) 2.38 14.21 66.67 -8.77 -30.42 7.1 53.3

94

Due to the regularity of the repeating pattern, the problem of computing intra bank offsets becomes

an extension of the above memory bank mapping problem where we have a rectangle with a repeat-

ing pattern, this time intra bank offsets. First, for the upper d-1 dimensions, we want to calculate

number of elements belonging to a particular bank that are in a d-2 dimensional space. This is, for

3-D matrix, we want to calculate how many elements are of each bank first in a cube with base vec-

tors [a2, 0, 0], [0, w1, 0], [0, 0, w0], then in a rectangle with base vectors [0, 0, 0], [0, a1, 0], [0, 0, w0],

and finally in one of the repeating regions. The maximum of these values for each dimension are

then stored in memory. Once this is done, the intra bank offset becomes a function of the intra

region offset and, 2 accumulators per access for the 2D case. One to store the number of elements

before it in the same row of super-tiles, and another with the number of elements in the previous

rows of super-tile. OffsetAcck = MemO[X0 mod a0, . . . , Xd−1 mod ad−1] + AccH + AccV Sim-

ilarly as with the bank access, one can use accumulators and counters instead of costly modulo

operation to access all the dimensions of the rectangle every iteration.

It is worth noting that the internal offset of the rectangle stored in MemO can be carefully arranged

to reduce memory waste. By keeping the lower offsets in the area of the region that will always

be within the bounds of the matrix under consideration, and assigning the higher ones to the areas

that represent the smaller area for the other dimensions, we can effectively reduce the total memory

waste. The highest offsets being located in the region that is less frequently accessed.

In figure 4.20 we see the size of the matrix in one dimension is an integer multiple of the size of

the super-tile in dimension d0, then we will only incur in wasted memory in the last iteration of the

complementary loop. With this in mind, we can keep the lowest offsets in the area of the super-tile

that are always going to be within the bounds, thus in the last iteration, such indexes will not be

accessed and we have reduced memory waste to 0. The order of the offsets in each of the zones

can be arbitrary and does not affect memory waste in any form.

95

0 1

2 3

Fill lastFill first

10

0 10 1

0 1 0 1

2 3

2 3 2 3

2 3 2 3

(a)

(b)

Figure 4.20: (a)Arrangement of the repeating intra bank offset rectangle of for an m x n matrix

using a 4 x 6 rectangle. (b)MemO offsets. [1] DOI 10.1145/ 3174243.3174251

The final amount of memory overhead can be calculated by:

Overhead =

d−1
∑

i=0

((⌈
wi

ST i
⌉ − wi)×

∏

k!=i

wk) (4.3)

The main results, obtained from synthesizing both mapping functions and their respective address

calculation logic ([3] and ours) and comparing it with the reported results from [18], can be

seen in table 4.1. Here we see that our method can not only achieve better partition factor for

96

certain stencils, as seen in the 12-point stencil, and no worse in general but also achieve reduced

resource utilization and clock period. The reduction of the clock period across the board comes

from the capabilities of the FPGA fabric to synthesize a small distributed multidimensional array

with fine grain access to all its elements with low hardware usage. The elimination of many of

the division and multiplication operations from [3] and [18], using instead a quick access to the

aforementioned memory, and only a few modulo operations, some multiplication, and additions

(which are also needed in [3] and [18]) account for the 100% reduction in DSP usage and decrease

hardware recourse utilization in general. For small stencils, such as Denoise, we see that the

implementing the mapping and address calculation function from [3] is actually more efficient in

terms of hardware utilization, but our method scales much better as the stencil size grows. But

compared with [18] we have an increase in hardware utilization for both LUT’s and FF.

97

Table 4.2: Memory waste comparison. [1] DOI 10.1145/3174243.3174251

Memory overhead (elements)

SD HD FHD WQXGA 4K

640x480 1280x720 1920x1080 2560x1600 3840x2160

Denoise

GMP 0 0 0 0 0

Ours 0 0 0 0 0

Improv. 0% 0% 0% 0% 0%

Bicubic

GMP 0 0 0 0 0

Ours 0 0 0 0 0

Improv. 0% 0% 0% 0% 0%

Deconv

GMP 0 0 0 0 0

Ours 0 0 0 0 0

Improv. 0% 0% 0% 0% 0%

MotionH

GMP 960 2880 0 3200 0

Ours 960 2880 0 3200 0

Improv. 0% 0% 0% 0% 0%

Sobel

GMP 3840 5040 6480 8000 6480

Ours 960 720 0 8324 0

Improv. 75% 85.7% 100% -4% 100%

12-Point

GMP 1920 5759 12960 3180 21591

Ours 960 0 0 8324 0

Improv. 50% 100% 100% -2261.7% 100%

Average 20.8% 30.95% 33.33% -34% 33.33%

Another important result is the comparison between the memory overhead resulting from the

padding method in [3] and our address calculation method. In both cases, memory overhead is

required to generate a regular and simple intra-bank address calculation function. The improved

memory overhead in comparison to [3] comes from the a ability to generate arbitrary offsets inside

the repeating region. This in turn allows for a better control of how much space is wasted each row

for different problem sizes while the method in [3] always needs to complete a sequence of N x B

elements where N is the partition factor obtained by their method and B is the block size. There are

98

some cases however that the k-dimensionality of our mapping function generates memory over-

head in all dimensions while the method in [3] being one dimensional always generates overhead

in just one. In this cases, the padding in [3] can be lower than ours, but this is not generally the

case.

99

CHAPTER 5: GRAPH BASED APPROACH FOR MEMORY BANKING

IN NON-STENCILS

This chapter is based on our previously published work in Juan Escobedo and Mingjie Lin, xtract-

ing Data Parallelism in Non-Stencil Kernel Computing by Optimally Coloring Folded Memory

Conflict Graph, Proceedings of the 55th Annual Design Automation Conference DOI

10.1145/3195970.3196088 [2] and encompasses our graph based approach to find a reduced con-

flict memory banking solution for non-stencil kernels.

We will begin this chapter with a motivational example that will be used throughout this chapter to

demonstrate concepts and exemplify the contribution of this graph-based approach for non-stencil

code.

Motivational example

Take the modified forward Gauss-Jordan Elimination (GE) kernel from figure 5.1 (a). As we can

see from figure 5.1 (b), (c), and(d), the relative distance of the memory elements to be accessed

changes with time. This in contrast to the stencil-type kernels like Sobel or Denoise where all the

relative distances remain constant. Although methods such as the one from [3] could in theory

tackle this kind of problems, we know from [1] that as the problem size grows, the number of

required banks for parallel memory access increases as well. For arbitrarily large problems, this

yields an unfeasible number of partitions. The question is how can we obtain a mapping with a

realistic partition factor that gives the best results in terms of conflict reduction

100

(a) (b)

(c) (d)

Figure 5.1: (a) Modified forward Gauss-Jordan elimination kernel. (b) Accessed elements on

iteration (i,j,k) = (0,1,1). (c) Accessed elements on iteration (i,j,k)=(0,1,2). (d) Accessed elements

on iteration (i,j,k) = (0,2,2). [2] DOI 10.1145/ 3195970.3196088

The idea is then to take a subproblem of size n, equivalent to the supertile from [17], and map the

whole graph to a region of the desired size. Figure 5.2 (a) shows 3 iterations of the GE kernel,

101

each in a different color. Now, considering a subproblem of size 2 x 2. All we have to do is take

the coordinates of each node in the grid modded by this factors, and carry the edges to this new

domain. This is, all nodes with coordinates in the form (a·2,b·2) for a, b ∈ Z will be mapped to

point (0,0), points in the form (a·n,b·n+1) to point (0,1) and so on and so forth. Any edges are

carried to the new map, including the cases when two nodes are mapped to the same one. In this

case we add a self edge to the respective node. These self edges will represent conflicts that cannot

be resolved by adding more banks but only by changing the geometry of the subproblem size.

This procedure is equivalent to overlapping all the subregions, as seen in figure 5.2 (b). Doing this

process for the 3 iterations of figure 5.2 (a) yields the conflict weighted graph of figure 5.2 (c).

102

1

0

1

2

0 1 2

0 1 2

0

1

2

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

6

2

2

2
2

2 2

(a)

(b)

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

11

1

(c)
0 1

0

3

3

2

Figure 5.2: (a) Conflict graph for iterations (i,j,k)=(0,1,1) in blue, (i,j,k)=(0,2,2) in purple, and

(i,j,k)=(2,3,3) in green. (b) Overlapping of 2x2 regions of the 4x4 problem. (c) Final weighted

conflict graph for the iterations under consideration. [2] DOI 10.1145/3195970.3196088

103

Once the problem has been mapped to the new subproblem, we color each node pairwise based

on the weight of the edge in descending order, trying to assign distinct colors to the nodes with

the heaviest edges first (which represents the highest amount of conflicts). Depending on the

maximum number of desired banks, we will be able to remove some of the conflicts. For the same

4x4 problem, one would need 7 colors to have true conflict free accesses. Using 2, 3, and 4 colors

on the 2x2 mapped problem, one would get 32, 26, and 20 conflicts respectively. This corresponds

to a reduction of 33.33%, 45.83%, and 58.3% of the total conflicts.

Considering the original 4x4 problem of figure 5.1, considering a supertile of size 2x2, we get the

conflict graph from figure 5.3

38

308

12
26

14

14

10

6

6

(a) (b) (c) (d)

0,0 0,1

0,2 0,3

0,0 1,0

1,1 0,1

0,0 1,0

2,0 0,1

0,0 1,0

2,0 3,0

38

308

12

6

6

38

308

12

6

38

308

12

Figure 5.3: Coloring of the resulting conflict graph (top) and corresponding intra-supertile [bank,

address] pair (bottom) for 1 bank (a), 2 banks (b), 3 banks (c), and 4 banks (d). [2] DOI 10.1145/

3195970.3196088

Repeating this for a problem of size 256x256 (for which a greedy graph coloring algorithm as the

one presented in [33] gives a required number of colors of 259 for conflict free access), still with

104

a supertile of 2x2 and again using 2,3, and 4 colors, we get 191520, 169664, and 147808 conflicts

respectively. This corresponds to a reduction of 25.1%, 33.46%, and 41.83% of the total number

of conflicts as seen in figure 5.4

1 2 3 4

4x4

256x256

Bank number

P
ro

b
le

m
 s

iz
e

GE kernel − Supertile 2x2

C
o

n
fl
ic

t
ra

ti
o

0.5

0.6

0.7

0.8

0.9

Figure 5.4: Conflict ratio for a supertile of size 2x2 and a problem of size of dimensions 256x256

(top) and 4x4 (bottom) for 1,2,3, and 4 banks. [2] DOI 10.1145/ 3195970.3196088

Problem Definition

Definition 6 (Iteration Domain) Given an l-level loop nest, the iteration domain I is formed by

all the iteration vectors~i = (i0, i1, . . . , il−1)
T within the loop bounds.

Definition 7 (Data Domain) Given an l-level loop nest, the data domain D is formed by all the

vectors ~x = (x0, x1, . . . , xd)
T within the matrix bounds.

Definition 8 (Affine Memory Reference) We say that a memory reference in a loop is affine if I

and D are affine spaces. I and D are affine if one can define any d-dimensional affine memory

access ~x = (x0, x1, . . . , xd−1)
T as a linear transformation of a one and only one l-dimensional

iteration vector~i in the form of:

105

~x = Ad×l ·~i + ~C

Ad×l =













a0,0 . . . a0,l−1

...
. . .

...

ad−1,0 . . . ad−1,l−1













, ~C =













a0,l
...

ad−1,l













Where Ad×l is a coefficient matrix, ak,j ∈ Z is the coefficient of the j-th iteration vector coordinate

on the k-th dimension, and ~C is a a column vector with constants.

Definition 9 (Memory Access Pattern) A pattern consists of m data points or accesses defined

as P = { ~A0, ~A1, . . . , ~Am−1}, where ~Aj = Aj ·~i + ~Cj, ~i ∈ I.

Definition 10 (Memory partitioning) A memory partition of an n-dimensional array can be de-

scribed as a pair of mapping functions (f(~x), g(~x)) where f(~x) assigns a bank for the data element

and g(~x) generates the corresponding intra-bank offset.

A bank access conflict between to references ~xj and ~xk is represented as ∃ ~x ∈ D s.t.

f(~xj) = f(~xk), ~xj 6= ~xk

This means the references intend to access the same bank in the same clock cycle. We use Problem

1 to formulate the bank mapping problem (for single-port memories).

Our memory partitioning consists of two mapping problems: bank mapping and intra-bank offset

mapping.

Problem 5 (Conflict minimization) Given an l-level loop on the iteration domain I, an access

pattern P on the data domain D, and a partition factor N, find a color mapping strategy f for the

conflict graph such that:

106

Minimize : −

|I|
∑

i=1

| f(Pi) | (5.1)

Eqn. 5.1 defines the objective function of conflict minimization: minimizing the number of times

elements in Pi are assigned to the same bank. After bank mapping, a data element in the original

array should be allocated a new intra-bank location.

For correctness, two different array elements will be either mapped onto different banks or the

same bank with different intra-bank offsets. An intra-bank offset function is valid if and only if:

∀~xj , ~xk ∈ D, ~xj 6= ~xk → (f(~xj), g(~xj)) 6= (f(~xk), g(~xk))

Which means either

f(~xj) 6= f(~xk) or f(~xj) = f(~xk), g(~xj) 6= g(~xk)

Problem 6 (Storage minimization) Given an l-level loop on the iteration domain I, an access

pattern P on the data domain D, and a partition factor N, find an intra-bank offset mapping

function g with minimum storage requirement S such that:

Minimize : S =

N−1
∑

j=0

max g(~xi) (5.2)

s.t. ∀ i s.t. f(~xi) = j and ∀~xj , ~xk ∈ D, ~xj 6= ~xk → (f(~xj), g(~xj)) 6= (f(~xk), g(~xk))

107

Eqn. 5.2 defines the objective function of partitioning with minimum storage overhead, ensuring

a valid partition.

Definition 11 (Conflict Graph) A conflict graph is generated by considering all the points in the

data domain D as nodes and adding edges between the data points accessed by the elements of all

patterns Pi, ∀ i ∈ I

Definition 12 (Proper graph coloring) Graph coloring of a graph G=(V,E) is the process where

the vertices v ∈V, are assigned distinct colors such that no two adjacent vertices, those connected

by an edge e ∈E, have the same color.

If a graph G can be colored with k colors, it is said the graph is k-colorable. Determining if a

graph G is k-colorable for k≥3 has been proven to be an NP-complete problem [27].

Definition 13 (Chromatic number) The chromatic number of a graph, denoted χ(G), is the

smallest k for which the graph is k-colorable.

Definition 14 (Soft coloring) Soft coloring [34] is a simplification of the proper coloring prob-

lem. Soft coloring coloring of a graphG=(V,E) with χ(G)=k and non-negative edge weights, is

the coloring of said graph using m colors such that the number edges connecting same-color nodes

is minimized. Note that m can be less, equal, or grater to k.

Definition 15 (Conflict ratio) The conflict ratio γ for a given conflict graph with particular col-

oring scheme is the ratio of the conflicts for said mapping scheme, which can be calculated as the

sum of the cardinality of each memory access pattern set Pi minus the of the cardinality of the

set Ci resulting from applying the mapping function f to the set Pi, and the maximum amount of

conflicts, which is the sum of the cardinality of each Pi minus 1 for all for all i ∈ I. This is:

108

γ =

|I|
∑

i=1

|Pi| − | f (Pi) |

|I|
∑

i=1

(|Pi| − 1)

(5.3)

Conflict minimization

The idea of fully parallel access for non-stencil applications was explored in [2]. The main issue

was that as the problem size grows, the number of banks needed to ensure conflict free access

grows at a rate that eclipses any benefits gained from the parallel access given the complexity of

the interconnect network.

To aggravate the situation, storing the whole mapping function becomes impractical for arbitrarily

large problems. Theoretically needing all or even more than the on chip storage/resources to do

the mapping.

Dividing the solution and only loading the necessary sections of the mapping presents complica-

tions of its own. Partial reconfiguration in its current state is not viable due to very long reconfig-

uration times. Making the area of the solution used for each partial reconfiguration, reducing the

number of total reconfigurations, does not solve the problem because the number of configuration

bits themselves increase. Adding some overhead to the data brought on chip only presents benefits

if the total number of bits needed to represent the bank and the address of each element is less than

k times the payload size which cannot be ensured for arbitrarily large problems, with k being the

number of access needed per iteration.

We propose to instead try to produce a fully conflict free solution, minimize the total number of

conflicts for a given maximum partition number and problem area.

109

Conflict graph generation

The first step in the algorithm consists in generation a conflict graph, initially considering all valid

data points in the data domain as nodes in an empty graph. For simplicity one can simply flatten

the array and label the nodes in sequential order. Once this is done, all the elements of each Pi

are connected via an edge. This is done for all i∈ I. The resulting conflict graph, as the one seen

in figure 5.5, encodes all the information necessary to achieve conflict-free parallel access, or as

presented in later sections, methods to arbitrarily reduce the total amount of conflicts.

110

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21
22

23

24

25

Figure 5.5: Full conflict graph for the GE kernel on a 5x5 matrix. [2] DOI 10.1145/

3195970.3196088

The simple form of the mapping function in methods such as [3] and [14], that could be in theory

used to do a conflict free mapping for any kernel, means that not all the edges of the conflict graph

can be considered (when arranging the nodes on a grid, not all edges might follow the function

specified by the mapping function), for a practical partition factor at least. Even with a large

partition factor, a single or even a couple families of hyperplanes ([16], [17]) might be insufficient

to consider all conflicts .

111

In theory one could increase the complexity of the mapping function, adding exception and modi-

fying the from, until all edges in the conflict graph are considered. This is the main idea of [2] and

the Arbitrary Mapping Function presented in it. We take this idea and expand on it, circumventing

the aforementioned problem of needing to store, in the worst case scenario, a mapping solution as

large as the problem itself applying the technique from the following section.

Graph overlapping

The way we propose to achieve this conflict minimization is by using an extension of the supertile

concept from [17]. In the aforementioned work, the supertile was the smallest rectangle for which

a mapping pattern that ensured conflict-free parallel access for a given stencil kernel repeated itself.

This idea can be extended to encode the most common combinations of nodes from an arbitrarily

large problem by overlapping regions of size n × m of the original problem grid where each node

has integer coordinates over one another, keeping all the edges and then projecting everything over

a single n × m region, adding the weight of the edges in the same relative position. The size

and geometry of the region (rectangle, square, etc) can be arbitrary, but ideally it is such that self

conflicts are minimized.

Applying this procedure to the graph in figure 5.5 on a 3x3 supertile gives us the graph from figure

5.6

112

1

2

3
4

5

6

7
8

9

44

2812
16

6

2

8

2

2

12

2

6

11
1

2
3

1

42

1
3

2 1 3

8

15

3 2
1

1

36

11
1

7

2

4

1

2
3

4

3

7

4

7

4

Figure 5.6: Conflict graph of a 3x3 supertile for the GE kernel on a 5x5 matrix. [2] DOI

10.1145/3195970.3196088

Because in the worst case, the resulting graph can become complete, traditional coloring algorithms

that ensure conflict free access are not adequate for our goal. First, they might need up to n × m

banks to do the mapping, exceeding the practical maximum even for relatively small work areas.

Second, given the nature of the resulting graph, it is not only possible but expected that there

are self-conflicts, this is, some loops will have edges to themselves. This kind of conflicts are

unavoidable for the proposed methodology and the only way to reduce them is by changing the

113

geometry of the supertile. After considering all this, we propose the following priority coloring

algorithm to reduce the total number fo conflicts.

Priority coloring

We propose the algorithm seen in algorithm 5.7 to do the mapping. For every edge, from heaviest

(most repeated pair of nodes accessed together) to lightest, we try to assign distinct colors to the

nodes connected by the edge. If both nodes have been mapped, then the edge cannot be removed

and it will have an impact in the final total conflict count. In all other cases (both nodes not mapped,

or just one node mapped) it is always possible to assign distinct nodes for a partition factor greater

than 1. Ideally, one would like to also consider all colors used by the nodes connected to the one

under consideration to avoid even more conflicts. Using the least used color in the subset of unused

colors by the adjacent nodes helps even out the distribution of colors. Since the algorithm is best-

effort based, the number of colors, and thus, the partition factor, is arbitrary. Section 5 illustrates

how different partition factors affect the total number of conflicts.

114

Data: Adj. Mat: M, Max colors: Col, Supertile size: ST

Result: Conflict #: Conf, Used colors: UC, Map scheme:Map

AE←Upper triang (M)-Diag(M);

GC←[0]1×Col;

Map←[0]ST ;

forall non-zero edges E∈ AE in descending order do

N1←Node at first endpoint of edge E;

N2←Node at second endpoint of edge E;

C1←Map(N1);

C2←Map(N2);

if C1==0 and C2==0 then

C1←Unused bank;

or least used bank if all banks are in use;

GC(1,C1)=GC(1,C1)+1;

Map(N1)=C1;

C2←Unused bank or ;

least used bank if all banks are in use different from C1;

GC(1,C2)=GC(1,C2)+1;

Map(N2)=C2;

else if C1==0 and C2 6=0 then

C1←Unused bank or ;

least used bank if all banks are in use different from C2;

GC(1,C1)=GC(1,C1)+1;

Map(N1)=C1;

else if C1 6=0 and C2==0 then

C2←Unused bank or ;

least used bank if all banks are in use different from C1;

GC(1,C2)=GC(1,C2)+1;

Map(N2)=C2;

end

if C1 6=C2 then

Remove edge E from AE;

end

end

UC←# of non-zero elements in vector GC;

Conf←
∑

∀i,j,st.i6=j AE(i,j)+M(i,i);

Figure 5.7: Edge removal algorithm. [2] DOI 10.1145/3195970.3196088

Bank mapping

Once the nodes of the supertile are colored, the mapping can be taken directly from it as can be

seen in section 5, figure 5.3. To obtain the bank, one simply would need to take the coordinates of

115

the memory access, mod them by the corresponding dimension of the supertile (called bank super

tile or BST), and access it. This is, for a k-dimensional problem:

Bank (B) = BST(x0 mod ST0, x1 mod ST1, . . .

, xk mod STk)

(5.4)

Address calculation

The address, or intra bank offset, calculation is very straight forward. Similarly to the work in [17],

the address calculation is made of two portions: intra-supertile offset and global offset.

The intra-supertile offset is calculated at compile time by scanning the supertile and assigning all

the elements of the same bank a distinct number. To access the intra-supertile offset, one accesses

the address supertile (AST) in the same fashion one would d access the bank super tile. this is:

Intra-supertile offset (STO) = AST(x0 mod ST0,

x1 mod ST1, . . . , xk mod STk)

(5.5)

An example of this can be seen in section 5, figure 5.3

To calculate the global offset, given a memory access point in k-dimensional space, one just has to

count the number of supertiles in the lower dimensions and multiply it by the maximum offset of

the bank per supertile. To simplify calculations, one can consider the same maximum offset M for

all banks as the greatest of all offsets in the supertile. Note this might lead to some memory waste

116

because some colors might have been used more often than other, but since the coloring algorithm

tries to balance color utilization, it is expected that the intra-supertile offsets for all the banks to be

roughly the same, the waste is expected to remain minimal.

This is, a memory access with coordinates (x0, x1, . . . , xk) for a problem size w0×w1× · · ·×wk,

and a supertile of size ST0 × ST1 × · · · × STk, with a maximum intra-supertile offset of M, the

global offset can be calculated as:

Global offser (GO) = M ∗
k−1
∑

i=0

(⌊
xi

STi

⌋ ∗
i−1
∏

j=0

⌈
wj

STj

⌉) (5.6)

Note for any given problem, equation 5.6 can be expanded at compile time given the dimensionality

of the problem does not change, thus being able to pre-compute some of the terms. Particularly all

the products in
∏

.

Finally, the definitive address is the sum of the intra-supertile offset (STO) and the global offset

(GO):

Address = STO +GO (5.7)

Methodology

We used Matlab 2014a to obtain the problems full conflict graphs for the code kernels seen in

figure 5.8, perform the overlapping, and color the resulting graphs using algorithm 5.7 storing the

resulting mapping function to later be used in a piece of code to be synthesized.

117

The kernels include commonly used pieces of code in linear algebra such as the LU factorization,

Gauss-Jordan elimination (forward), QR factorization and Cholesky decomposition. In addition

to 2 custom kernels, Double row/Double column and Row/Column to test the generality of the

method.

To determine the tile sizes to be used we generated a set of two figures per kernel. One with the

ratio between self-conflicts for each tile size of up to 10× 10, and another with the partition factor

needed to eliminate all inter node conflicts for a given tile size, again up to 10 × 10. All sets were

generated on a 10 × 10 problem. A generic greedy coloring algorithm was used to obtain this

coloring.

Based on the results obtained, we selected 3 different supertile sizes of 8x8, 16x16, and 32x32, a

maximum partition factor of 32 (available banks) to study the effects on conflict reduction for a

given tile size if more banks are used. We limited the problem sizes up to 128x128 for each kernel

due to computational power restrictions. Note the tile sizes are all powers of 2, which although

might not yield the optimal partition number, makes the multiplexer implementation much more

efficient.

118

[n,m]=size(A)

S=0;

for i=1:n

for j=1:m

S=S+A(i,j)+A(j,i);

end

end

[n,m]=size(A)

S=0;

for i=1:n/2

for j=1:m/2

S=S+A(i,j)+A(2*i,j)+A(i,2*j);

end

end

[n,m]=size(A)

for i=0:m-2

for j=i+1:n-1

for k=i:m-1

TempA(j,k)=A(j,k)-(A(j,i)/A(,i))*

U(i,k);

end

end

A=TempA;

end

(a) (b) (c)

T=U;

GEA=U;

N=size(U,1);

for i = 1:N-1

for j = i+1:N

for k = i: N

GEA(j,k) = U(j,k) -((U(j,i)/

U(i,i))*U(i,k));

end

end

U=GEA;

end

L=T*inv(U);

[m,n]=size(A);

r=zeros(size(A));

for k=1:n

for i=1:k-1

s=0;

for j=1:m

s=s+A(j,i)*A(j,k);

end

r(i,k) = s;

for j = 1: m

A(j,k)=A(j,k)-A(j,i)*r(i,k);

end

end

s = 0;

for j = 1: m

s = s + A(j,k)^2;

end

r(k,k) = sqrt(s);

for j = 1 : m

A(j,k)=A(j,k)/r(k,k);

end

end

L=zeros(size(A));

n=size(A,1);

for i = 1:n

for j = 1:i

s=0;

for k = 1:j

s=s+L(k,i)*L(k,j);

end

if(i==j)

L(j,i)=sqrt(A(i,i)-s);

else

L(j,i)=(1.0/L(j,j)*(A(j,i)- s));

end

end

end

(d) (e) (f)

Figure 5.8: Matlab code for: (a) Row/Column (RC), (b) Double Row/ Double (DRDC), (c) Com-

bined Gauss-Jordan forward elimination (GE), (d) LU factorization (LU), (e) Cholesky decompo-

sition (CHO), (f) QR decomposition (QR). [2] DOI 10.1145/3195970.3196088

119

We synthesized the mapping functions for the aforementioned supertile sizes of the GE kernel (4

memory accesses) using a partition factor of 16. The Verilog code was generated by implementing

the function seen in figure 5.9 in Vivado HLS 2015.4 and synthesized Vivado Hlx 2015.4 on a

Kintex 7 xc7k160tffg676-3 chip. The function takes the 4, 2-D coordinates in D of the references

as inputs and outputs the corresponding bank and address of the elements.

120

#include <stdio.h>

#include <math.h>

#define Mat0 128 / /Size of the problem

#define ST 8 / /Size of the supertile

#define HC Mat0/ST / /Total number of supertiles per row of the problem

void MapFun(unsigned int *X1,unsigned int *Y1,unsigned int *X2,unsigned int *Y2, unsigned int *X3,unsigned int *Y3,unsigned int *X4,unsigned int *

→֒ Y4, unsigned char *B1,unsigned int *A1,unsigned char *B2,unsigned int *A2,

unsigned char *B3,unsigned int *A3,unsigned char *B4,unsigned int *A4)

{

unsigned char tempSTx1,tempSTy1,tempSTx2,tempSTy2,tempSTx3,tempSTy3,tempSTx4,tempSTy4;

unsigned char BST[8][8]={

{1,2,3,4,5,6,7,8}, {12,9,4,3,6,5,8,7}, {13,14,10,2,7,8,5,6},

{14,13,15,11,8,7,6,5}, {15,1,9,14,16,2,3,4}, {9,15,11,16,13,12,4,3},

{10,16,12,1,10,14,10,2}, {11,1,13,9,11,15,12,16},

}; / /Bank map

#pragma HLS ARRAY_PARTITION variable=BST complete dim=0

unsigned char AST[8][8]={

{0,0,0,0,0,0,0,0}, {0,0,1,1,1,1,1,1}, {0,0,0,1,2,2,2,2},

{1,1,0,0,3,3,3,3}, {1,1,1,2,0,2,2,2}, {2,2,1,1,2,1,3,3},

{1,2,2,2,2,3,3,3}, {2,3,3,3,3,3,3,3},

}; / /Intra-tile address offset

#pragma HLS ARRAY_PARTITION variable=AST complete dim=0

while(1)

{

#pragma HLS PIPELINE II=1

/ /Calculate intra-tile coordiante

tempSTx1=*X1%ST; tempSTy1=*Y1%ST; tempSTx2=*X2%ST;

tempSTy2=*Y2%ST; tempSTx3=*X3%ST; tempSTy3=*Y3%ST;

tempSTx4=*X4%ST; tempSTy4=*Y4%ST;

/ /Bank assingment

*B1=BST[tempSTy1][tempSTx1]; *B2=BST[tempSTy2][tempSTx2];

*B3=BST[tempSTy3][tempSTx3]; *B4=BST[tempSTy4][tempSTx4];

/ /Address Assignment

*A1=AST[tempSTy1][tempSTx1]+floor(*X1/ST)+HC*floor(*X1/ST);

*A2=AST[tempSTy2][tempSTx2]+floor(*X2/ST)+HC*floor(*Y2/ST);

*A3=AST[tempSTy3][tempSTx3]+floor(*X3/ST)+HC*floor(*Y3/ST);

*A4=AST[tempSTy4][tempSTx4]+floor(*X4/ST)+HC*floor(*Y4/ST);

}

}

Figure 5.9: Code template for the mapping function of the GE with a supertile of size 8x8. [2] DOI

10.1145/3195970.3196088

121

Results

To determine if there was an optimal tile size we first generated two figures per kernel. One with

the ratio between self-conflicts for each tile size of up to 10 × 10, and another with the partition

factor needed to eliminate all inter node conflicts for a given tile size, again up to 10 × 10. These

results can be seen in table 5.1 and 5.1. The [Y,X] coordinates in each figure correspond directly

to the size of tile used.

As we can see from table 5.1, right column, for the stencil kernels, intra-node conflicts (self-

conflicts) can be reduced to 0 after a certain supertile size smaller than the problem size. Once

in this region, the best solution is to pick the corresponding location in the left column such that

it has the smallest partition factor. Note that due to timing and processing power constraints, an

approximate coloring algorithm was used. Using an optimal coloring algorithm should yield the

same "best" tile size and partition factor as [17].

Table 5.2 on the other hand shows,on the right column,that for the non-stencil kernels, intra-node

conflicts (self-conflicts) cannot be reduced to 0 in general unless the entire problem size is used as a

tile. In this case, we must decide an arbitrary tile size such that the ratio of unavoidable conflicts is

less than the maximum allowed according to the performance requirements. One can then choose

from all the valid tile sizes the one that offers the smallest partition factor (left column).

122

Table 5.1: Number of colors using approximate coloring to ensure no inter-node conflict (Left) and

ratio of intra-node, self-conflict, vs total conflicts (Right)) for a particular stencil kernel with tile

size X × Y. [2] DOI 10.1145/ 3195970. 3196088

Denoise approx. conflict free coloring (10x10)

2 4 6 8 10 12

2

4

6

8

10

12

1

2

3

4

5

6

7

8

9 Denoise coflict ratio (10x10)

2 4 6 8 10 12

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Deconv approx. conflict free coloring (10x10)

2 4 6 8 10 12

2

4

6

8

10

12

1

2

3

4

5

6

7

8

9

10

Deconv coflict ratio (10x10)

2 4 6 8 10 12

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BicubicFull approx. conflict free coloring (10x10)

2 4 6 8 10 12

2

4

6

8

10

12

1

2

3

4

5

6

7

8

9 BicubicFull coflict ratio (10x10)

2 4 6 8 10 12

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MotionH approx. conflict free coloring (10x10)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
0

1

2

3

4

5

6

7

8

9

10

11
MotionH coflict ratio (10x10)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sobel approx. conflict free coloring (10x10)

2 4 6 8 10 12 14

2

4

6

8

10

12

14

5

10

15

20

25

Sobel coflict ratio (10x10)

2 4 6 8 10 12 14

2

4

6

8

10

12

14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

123

Table 5.2: Number of colors using approximate coloring to ensure no inter-node conflict (Left) and

ratio of intra-node, self-conflict, vs total conflicts (Right)) for a particular non-stencil kernel with

tile size X × Y. [2] DOI 10.1145/ 3195970.3196088

GE approx. conflict free coloring (10x10)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11 2

4

6

8

10

12

14

16

18

20

22
GE coflict ratio (10x10)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cholesky approx. conflict free coloring (10x10)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11
1

2

3

4

5

6

7

8

9

10

11

12

Cholesky coflict ratio (10x10)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
QR approx. conflict free coloring (10x10)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11
1

2

3

4

5

6

7

8

9

10

11
QR coflict ratio (10x10)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RC approx. conflict free coloring (10x10)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11
1

2

3

4

5

6

7

8

9

10

11
RC coflict ratio (10x10)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DRDC approx. conflict free coloring (10x10)

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

1

2

3

4

5

6

7

DRDC coflict ratio (10x10)

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

124

Given the tile size is dependent of particular performance requirements for non-stencil kernels and

most stencils are smaller than a 6x6 rectangle, we chose test tile sizes of 8x8, 16x16, and 32x32

since they allow for an efficient hardware implementation of multiplexers. Using these tile sizes

we obtained the number of conflicts remaining when one allowed up to n banks to be used. Figures

5.10 through 5.15 show the conflict ratio for all the test kernels using the aforementioned supertile

sizes and a partition factor (number of banks) of up to 32.

1 16 32 1 16 32 1 16 32 1 16 32

0

0.2

0.4

0.6

0.8

1

C
o

n
lf
ic

t
ra

ti
o

Used colors

8x8 16x16 32x32 128x128

Figure 5.10: Conflict ratio for the GE kernel on a problem of size 128x128 and a supertile of size:

8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/ 3195970. 3196088

125

1 16 32 1 16 32 1 16 32 1 16 32

0

0.2

0.4

0.6

0.8

1

C
o

n
lf
ic

t
ra

ti
o

Used colors

8x8 16x16 32x32 128x128

Figure 5.11: Conflict ratio for the GE kernel on a problem of size 128x128 and a supertile of size:

8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/ 3195970. 3196088

1 16 32 1 16 32 1 16 32 1 16 32

0

0.2

0.4

0.6

0.8

1

C
o

n
lf
ic

t
ra

ti
o

Used colors

8x8 16x16 32x32 128x128

Figure 5.12: Conflict ratio for the Cholesky kernel on a problem of size 128x128 and a supertile

of size: 8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/ 3195970. 3196088

126

1 16 32 1 16 32 1 16 32 1 16 32

0

0.2

0.4

0.6

0.8

1

C
o

n
lf
ic

t
ra

ti
o

Used colors

8x8 16x16 32x32 128x128

Figure 5.13: Conflict ratio for the QR kernel on a problem of size 128x128 and a supertile of size:

8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/ 3195970. 3196088

1 16 32 1 16 32 1 16 32 1 16 32

0

0.2

0.4

0.6

0.8

1

C
o

n
lf
ic

t
ra

ti
o

Used colors

8x8 16x16 32x32 128x128

Figure 5.14: Conflict ratio for the RC kernel on problem of size 128x128 and a supertile of size:

8x8, 16x16, 32,x32, and 128x128/ [2] DOI 10.1145/ 3195970. 3196088

127

1 16 32 1 16 32 1 16 32 1 16 32

0

0.2

0.4

0.6

0.8

1

C
o

n
lf
ic

t
ra

ti
o

Used colors

8x8 16x16 32x32 128x128

Figure 5.15: Conflict ratio for the DRDC kernel on a problem of size 128x128 and a supertile of

size: 8x8, 16x16, 32,x32, and 128x128. [2] DOI 10.1145/ 3195970. 3196088

As we can see from figures 5.10 through 5.15 both the geometry of the supertile and the partition

factor (used banks) have an effect on the total conflict reduction.

In general, for a fixed supertile size, the more banks are available, the greater the conflict reduction.

This trend continues until there are enough colors to ensure all adjacent nodes can be assigned a

distinct color. The number of banks required to reach this point will vary depending on the coloring

strategy implemented. A greedy approach like the one used in this paper will most likely not give

the optimal coloring scheme except for the most simplest of conflict graphs such as the DR and

DRDC kernels. Once all inter-node edges are removed, only the self conflicts will contribute to the

total amount of conflicts. The only way to eliminate or modify these self conflicts is by changing

the geometry of the supertile. This effect can be seen by comparing the number of conflicts for a

given partition factor between two supertile sizes.

Note that some kernels, most notably the QR factorization in figure 5.13, posses a much higher

128

conflict ratio for a particular partition factor than previous, smaller ones. This is most likely due

to a compound effect different of factors such as the color selection priority of the coloring al-

gorithm, the number of available colors, and the resulting structure of the conflict graph. These

factors influence the order in which the nodes are colored, and the total amount of available colors

determines the distribution of the colors. The algorithm tries to balance the colors used in order to

achieve an uniform distribution (no color is used significantly more than any other), the effects of

the greedy selection can accumulate over time leaving low-weight edges considered at the end of

the algorithm connecting same-colored nodes . However, one can still observe the aforementioned

conflict reduction trend.

Table 5.3 shows the resource utilization and achievable clock period for a fully pipelined (II=1)

implementations of the mapping function for the 4 accesses of the GE kernel on a problem size of

128x128 elements for different supertile sizes.

129

Table 5.3: Resource utilization for the GE kernel, problem size 128, and different supertile sizes.

[2] DOI 10.1145/3195970.3196088

ST size Resource Utilization Available Utilization CP

(%) (nS)

8x8

LUT 8936 101400 8.81

8.55

LUT RAM 1 35000 0.01

FF 6435 202800 3.17

BRAM 7 325 2.15

DSP 68 600 11.33

16x16

LUT 9094 101400 8.97

8.6

LUT RAM 1 35000 0.01

FF 6467 202800 3.19

BRAM 7 325 2.15

DSP 68 600 11.33

32x32

LUT 9698 101400 9.56

8.6

LUT RAM 1 35000 0.01

FF 6480 202800 3.2

BRAM 7 325 2.15

DSP 68 600 11.33

As we can see from the table, the resource utilization does not change in any significant way when

the supertile size increases from 8x8 to 32x32. This is in part due to the size of the supertiles

being a power of 2, which allows for better resource optimization. Another observation is that

the number of BRAM used remained constant at 7. The only parameter which remained constant

130

was the partition factor, which was set at 16. This tells us that the bulk of the mapping was likely

performed by this BRAM, and since the number of IO remained constant, the small difference in

the LUT and FF is due to the maximum intra bank address, which reaches a higher value for bigger

supertiles.

131

CHAPTER 6: NON-LINEAR TRANSFORMATION BASED APPROACH

FOR OPTIMAL MEMORY BANKING IN QUASI-STENCILS

This chapter is based on our previously published work in Juan Escobedo and Mingjie Lin, Ex-

ploiting Irregular Memory Parallelism in Quasi-Stencils through Nonlinear Transformation, 2019

IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM) ©2011 IEEE [20] and encompasses our novel approach for handling non-stencil

code and finding an optimal banking scheme using non-linear transformations.

We will begin this chapter with a motivational example that will be used throughout this chapter to

demonstrate concepts and exemplify the contribution of this work.

132

Motivational example

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

(a)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

a b c d e f g h

a b cd e f g h

a b c d e fg h

ab c d e f g h

a b c d e fg h

ab c d e f g h

a b c de f g h

a b c d e f gh

(b)

Figure 6.1: (a) Memory access geometry for 4 distinct iterations in the original space:

(i,j)=[(1,1),(2,3),(3,1),(4,4)]. Note the geometry changes. (b) Memory partition with 8 banks using

the GMP method from [3]. Number of banks is proportional to the problem size. ©2019 IEEE

It is well-known that the irregular memory access pattern found in non-stencil kernel computing

renders the well-known hyperplane- [3], lattice- [16], or graph-based [1] HLS techniques almost

totally ineffective. This is because that all these approaches rely on exploiting the repeated pat-

terning of memory accesses, thus can not effectively handle non-repeatable or irregular memory

accesses. Consider a code segment of a loop with two independent loop variables i : 1 → n − 1

and j : 1→ m−1. Its loop statement is S = f(M [i, j],M [2i, j],M [i, 2j],M [2i, 2j]) and operates

on a 2-D data matrix. Clearly, this loop is an example of non-stencil kernel because the relative

distance between its accessed memory locations varies with its iterations. To illustrate, we plots its

four iterations, (i, j) = [(1, 1), (2, 3), (3, 1), (4, 4)], in Fig. 6.1(a). If we directly apply the classical

133

GMP memory banking scheme [3] to this irregular non-stencil case, as shown in Fig. 6.1(b), we

will require 8 independent memory banks for a mere 8 × 8 matrix, which makes directly utilizing

the GMP method infeasible for any realistic input data size.

1 2 4 8 3 6

1

2

4

8

3

6

0

(a) a

1 2 4 8 3 6

1

2

4

8

3

6

0

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

(b) b

Figure 6.2: (a) Memory access geometry for 4 distinct iterations in our transformed domain:

(i,j)=[(1,1),(2,3),(3,1),(4,4)]. Note the constant shape. (b) Memory partition with 4 banks us-

ing the ESG method in [1]. Number of banks is independent of problem size. Work in [3] given

the same number of banks but different layout. ©2019 IEEE

Fortunately, as discussed in Section 6, the motivational code segment shown in Fig. 6.1 can be clas-

sified as a quasi-stencil kernel. A quasi-stencil code is a type of non-stencil and affine kernel code

for which we can find a non-linear data domain layout transformation based on prime factorization

such that the code behaves effectively as a stencil in this new data layout. Further details regarding

the definition of quasi-stencil and its requirements can be found in Section 6 while Section 6 con-

tains more information regarding the non-linear transformation that converts a quasi-stencil code

134

into a stencil-based one. After this nonlinear memory transformation, the modified data domain of

the non-stencil code depicted in Fig. 6.1 is shown in Fig. 6.2. Here we access the same memory

locations with the same indexes during the same iteration but comparing the relative distances of

the memory locations accessed it is evident that now we have code that behaves like a stencil.

This allows us to use the vast repertoire of memory partitioning algorithms that exist in literature.

Applying the partitioning algorithm from [1], we only need 4 memory banks to do the partition,

which is the optimal solution given the fact that we only have 4 memory accesses. Furthermore,

our solution is independent of the problem size, meaning it scales well for larger problems.

+

+

.

.

.

.

.

.

.

.

. .
.
.

.

.

.

.

.

. .
.
.

.

.

.

.

.

. .
.
.

.

.

.

ϕ1NS

ϕ1PFS

ϕ2PFS

ϕkPFS

LUT ϕ1PFS
%ST

g(ϕ1PFS
)

ϕ2PFS
%ST

g(ϕ2PFS
)

ϕkPFS%ST

g(ϕkPFS
)

Bank 1

Bank 2

Bank N

Output 1

Output 2

Output k

C1

Ck

Figure 6.3: Circuit diagram of our implementation. After our layer of indirection represented by a

LUT, the circuit schematic remains the same as traditional banking schemes. ©2019 IEEE

Finally, to further demonstrate the effectiveness of our methodology, we present one possible cir-

cuit implementation of our method in Fig. 6.3. In general, our hardware requirements are very

similar to that of the traditional memory banking schemes for stencil computations [1, 3, 16] with

only an addition of an extra layer of indirection which can be implemented using LUT’s or even

BRAM. Because the memory pattern is a stencil in the transformed domain we only need to cal-

culate one of the addresses in the new domain and the others can be inferred by the offset of the

135

stencil. Further details re-gathering implementation details will be discussed in Section 6.

Overall Methodology

In this section, we will first present the definition of quasi-stencil code, the requirements to be

classified as one, and some additional cases that can be transformed into Quasi-stencil under cer-

tain conditions. In addition, we discuss the mathematical theory behind our nonlinear memory

transformation, i.e., the prime factorization space and its linearization, as well as its hardware

implementations details.

Quasi-stencil: Definition and Criteria

We define a quasi-stencil memory access pattern as a kind of affine and non-stencil kernel code

where each memory access Rk can be written as:

Rk = Ak ·~i, (6.1)

where each Ak is a square n× n non-singular and diagonal matrix such that Ai 6= Aj , ∀i 6= j, n is

the loop depth, and~i is the iteration vector. In this work, we consider only a perfectly nested loop

or its equivalent one. This condition leads to the observation that each dimension is controlled by

a single loop variable, which is the same for all accesses, but with different step sizes for each.

This kind of code has the property that now the exploration of all Data Domain dimensions is

independent of the other and we can proceed to analyze them independently. By doing this, we

can perform analysis on a 1D case and use it to extend the results to an n-dimensional problem.

136

1 2 3 54

0

1

2

3

4

Add

ii

Figure 6.4: Memory accesses formed by the lines ϕ11 :i(blue) and ϕ12=2*i(red) in the plane ID,DD

with as single intersection point at the origin. ©2019 IEEE

In order to intuitively visualize the behavior of a non-stencil kernel code, we develop a new dia-

gram, where each memory access along each dimension can be represented as a straight line with

slope Aki,i for access k in dimension i. For the aforementioned conditions on the A matrix in

Equation 6.1, all such lines intersect at the origin. In other words, for an access to a n-dimensional

memory in the form M(ϕ1, ϕ2, . . . , ϕn), the value of the coordinate for each dimension can be

expressed as:

ϕi = Aki,i ·~i. (6.2)

For example, in the code segment listed in Section 6, two such line diagrams of the first two

accesses M(i, j) and M(2 ∗ i, j) along the first dimension are depicted in Fig. 6.4.

137

Generalizing Quasi-Stencil

To accommodate various memory access patterns found in real-world applications, we now attempt

to generalize the cases of non-stencil kernels that we can handle, especially these with a constant

in its address. Let us consider the case where we have memory accesses of the form:

Rk = Ak ·~i+ bk, (6.3)

Still with the same restriction as before on the Ak matrices in terms of being non-singular, n ×

n, diagonal matrices all different from each other. We consider three special cases that we can

handle, each of which will require a particular modification to its data domain besides the non-

linear transformation.

i

ϕ

0

1

1

2

2

3

3

4

4 5-1

-2

(a) a

i

ϕ

0

1

1

2

2

3

3

4

4 5-1

-2

(b) b

i

ϕ

0

1

1

2

2

3

3

4

4 5-1

-2

(c) c

Figure 6.5: (a) Single intersect at ϕ = 0, i 6= 0. ϕ11 : i − 1(blue) and ϕ12 = 2(i − 1) (red). (b)

Single intersect at ϕ 6= 0, i 6= 0. ϕ11 : i(blue) and ϕ12 = 2i−1 (red). (c) Multiple intersect, integer

delay. ϕ11 : i− 1 (blue), ϕ12 = 2(i− 1) (red), and ϕ12 = 3(i− 2) (green). ©2019 IEEE

138

Single intersect point at ϕk = 0, i 6= 0

If the intersect point is on the x axis, corresponding to the loop variable controlling the movement

in the corresponding dimension, we do not need to take extra considerations. The prime factoriza-

tion space will natively give a representation of the code. An example of this can be seen in figure

6.5 (a).

Single intersect point at ϕk 6= 0

If the intersect point is at any point in the x axis such that it is not on ϕ = 0, as seen in Fig 6.5 (b)

where the intersect point is at (1,1), we take note of the coordinate in the y axis, corresponding to

the ϕ. This will be used to modify the Data Domain.

Multiple intersect points with integer time delay

There are cases such as the ones seen in Fig. 6.5 (c) where if we delay the execution of one or more

memory access we can make the lines intersect at one point. Depending if the y coordinate is 0 or

not we end up with one of the previous cases. For (c), if we delay thee execution of the memory

access corresponding to the green line by -1 iterations, meaning we advance the execution of the

code one iteration, we end up with all lines intersection at the point (1,0). As it is evident, this is

one of the previous cases which we can handle.

Prime Factorization Space

The Prime Factorization Space belongs to the logarithmic-space family of memory layouts. We

take advantage of the property of logarithms to transform multiplications into addition in order to

139

obtain a memory layout that converts non-stencil code that meets the quasi-stencil criteria defined

in Section 6 and 6 into a stencil. To explain this basic idea, we consider a simple example of a

two-element non-stencil memory accesses consisting of ϕ1 = a1 ·i and ϕ2 = a2 ·i with a1 6= a2 and

i is a loop variable. As iteration progresses, it is obvious that the distance between the accesses

∆d = d1 − d2 = a1 · i − a2 · i = (a1 − a2) · i will change according to i, thus clearly a non-

stencil kernel code. Now if we calculate the logarithm of each memory address, we will obtain

ϕ′
1 = logϕ1 = log(a1 · i) = log a1 + log i and ϕ′

2 = logϕ2 = log(a2 · i) = log a2 + log i. Now, if

we take the difference of the accesses in this logarithmic space, we will obtain ∆d = ϕ′
1 − ϕ′

2 =

log a1 + log i − (log a2 + log i) = log a1 − log a2 = log
(

a1
a2

)

= c, which clearly is a constant

and shows that, in the log space, the distance between the two memory accesses is independent of

the iteration we are in, thus behaving exactly like a stencil. The iteration will now just center the

access around a memory location but the relative position of the accesses will remain he same.

140

1 2 4 8

6 12 24

36 72

3

9 18

5 10 20 40

15 30 60 120

45 90 180 360

20

20

20

21

21

22

22

23

23

30

30

30

31

31

32

32

50

51

Figure 6.6: Partial PFS for the first 3 primes 2, 3, and 5. We can represent numbers from 1-6

without gaps. ©2019 IEEE

However, directly performing such logarithmic operations to memory addresses will need to rep-

resent decimal values that implies the need for floating point arithmetic. We circumvent this issue

through utilizing a spacial case of the logarithm spaces: the Prime Factorization Space.

It is well-known that any number can be written as a product of prime numbers. This is, any ratio-

nal number n can be written as n = 2k1 · 3k2 · 5k3 · · · · · pknn If we calculate the log of n, we

obtain logn = log(2k1 ·3k2 ·5k3 · · · · ·pknn . . .) = k1 log 2+k2 log 3+k3 log 5+ · · ·+kn log pn+ . . . ,

where kn is an integer. With this in mind, we can consider each of the integers kn as the coordinate

of the number in a m-dimensional space, where m is the number of primes below the maximum

141

address of the memory we will ever access during the execution of the program. Each of this m

dimensions is a 1-D space corresponding to one of the primes and movement along this dimen-

sion corresponds to changes of the exponent of the corresponding prime in the prime factorization

of the number. Now we can represent all integer numbers in log space with integer coordinates.

Even negative numbers since we can mirror the space and consider negative numbers as movement

in the negative direction (towards this mirrored space). We can see an example of how a partial

prime factorization space looks for the first 3 primes, namely: 2, 3, and 5, forming a 3D space in

Fig. 6.6. Note that numbers where we have more than 1 non-zero coordinate corresponds to the

multiplication of all the corresponding primes based on which coordinate is non-zero, to the power

of the coordinate. This allows us to represent any positive rational numbers, particularly integers,

natively. Unfortunately, this log-based memory space typically possesses a very high dimension-

ality, which makes it hard to implement with traditional memory architectures and increases the

complexity of memory address calculations. In the following section, we circumvent this issue by

means of linearizing such a log-based memory space.

Transformed data domain

As mentioned previously, the memory space based on prime factorization, which converts a quasi-

stencil kernel code into a stencil one, can be very high-dimensional. Unfortunately, such a trans-

formed memory space is difficult to implement with traditional memory architectures. To solve

this feasibility problem, we linearize the PFS row/column wise starting from the 2D space with

the smallest origin coordinate. To illustrate, given the sample PFS in Fig. 6.6, we can obtain a lin-

earized PFS depicted in Fig. 6.7(a). This corresponds to the case in which the memory addresses of

every dimension have a single intersect point at (0,0). For the case where we have an intersect point

of (x, 0), where x 6= 0, we simply add the element 0 to the beginning of the linearized space and

mirror the linearized space around it as needed but with negative offset numbers. This will allow

142

us to represent memory locations that occurred before the intersect point as shown in Fig. 6.7(b).

Note that, in general, memory locations are always positive, so negative memory locations do not

occur. Therefore, this case usually only happens when we also have a non-zero intersect coordi-

nate in the y axis. Finally, the general case where the intersect happens at (x, y) can be seen in

Fig. 6.7(c). Here we simply take the value of the intersect and add it to the mirrored domain. In

this case, we are considering y = 3 as an example. Note some of the elements on the transformed

domain (≥-3) now become positive and could be accessed by the code.

0

1

1

2

2

4

4

8

8

3

3

6

6

12

12

24 9

9

18

18

36 72 5

5

10

10

20 40 15

15

30 60

14 14 16 177 11

. . .

(a) a

0

0

1

1

2

2

4

4

8

8

3

3

6

6

12

12

24 9

9 185 10 1514 14 16 17

-1-2-4-8-3-6-12-24-9

7 11

.

(b) b

0

0

1

1

2

2

4

4 8

3

3

6

6

12

12

9

9 18

5

5 10

15

1514 14 16 17

-1-3-6 -9-21 -5 7

7

11

11

27.

(c) c

Figure 6.7: (a) Linearized PFS for the case where memory locations intersect at the origin. (b)

Extended linearized PFS for the case where memory locations intersect at (x, 0), x > 0. (c)

Shifted linearized space for the case where memory locations at (x, y), x, y > 0. For this example

y = 3. ©2019 IEEE

143

Overhead Reduction

Although it is possible to calculate the address in the linearized PFS during runtime it would be

computationally expensive since it would require us to find the prime factorization of at least one

of the addresses in the original domain and perform a number of Multiply-Accumulate (MAC)

operations to calculate the address in the linearized PFS. To avoid this we have opted to use a

lookup table that could be implement either in fabric for speed or in a BRAM if the indirection

vector is large enough. This lookup table simply contains the correct address in the linearized PFS

of the address in the original space. Using a lookup table also allows us to add some non-linearities

to the address conversion that given the nature of the rectangular linearizion technique we use to

reduce the dimensionality of the PFS would translate to an amount of wasted memory space that

would render the method almost unusable.

Take the example of section 6. The full linearized PFS in both dimensions would look like the

one from figure 6.8 (a). Note now the transformed domain has the same dimensionality of the

original data domain. The areas in gray are memory locations that are never accessed for (i,j)≤5

either because of the nature of the code or they are artificial memory addresses generated when we

linearize the PFS row/column wise. A data domain that was originally only 10×10, for a total of

100 data elements now consist of a 2D grid of 17×17 elements for a total of 289 elements. And

increase in the total number of elements close to 200%.

144

1

1

2

2

4

4

8

8

3

3

6

6

12

12

24

24

5

5

10

10

20

20

40

40

15

15

30

30

60

60

7

7

120

120

(a) a

1

1

2

2

4

4

8

8

3

3

6

6

12

12

24

24

5

5

10

10

20

20

40

40

15

15

30

30

60

60

7

7

120

120

(b) b

1

1

2

2

4

4

8

8

3

3

6

6

5

5

10

10

(c) c

Figure 6.8: (a) Full Linearized PFS for the motivational example. Gray cells are memory locations

that are never accessed for i,j≤5. (b) Full Linearized PFS with overlapped region of repeated

banking. (c) Pruned linearized PFS. ©2019 IEEE

145

This approach, which introduces nonlinearities in the address mapping, is particular straightfor-

ward to do by using our lookup table approach to do the memory address indirection ayer instead

of performing the calculation during runtime.

Implementation

For the final implementation scheme we have opted to use the pruned linearized PFS to keep

memory overhead to a manageable amount while using a LUT as an indirection layer to translate

addresses in the original domain to the transformed domain for hardware simplicity and speed.

Once we have transformed the problem, the quasi stencil code now behaves like a stencil and thus

we are free to use any of the available stencil banking schemes existing in literature. For this

work we have decided to implement the method from [1] as our banking scheme given the proven

optimality results for any stencil in terms of partition factor and good performance metrics in terms

of resource utilization and clock period.

For this method, bank selection is done by accessing a small memory of the same dimensionality

as the original problem but much smaller size. This memory represents the smallest rectangle

containing a repeating pattern in the banking scheme. The size of this memory is independent of

the problem size and only depends on the geometry of the stencil. The access is done by applying

modulo operations to each of the dimensions of the transformed address by the size of the memory

in the corresponding dimension to obtain the intra-tile index. Accessing it provides the right bank

for parallel, conflict-free access for a given stencil.

B = OffST(ϕ
′%ST) (6.4)

146

The intra bank address ϕB can be calculated from the transformed memory address ϕ′ by the

formula seen in Eq. 6.5:

ϕB = OffST(ϕ
′%ST) +

n
∑

i=0

(ϕ′
i/Mi) · ki (6.5)

As mentioned in section 6, the intra-bank address function is composed of 2 parts: the first is the

same as the bank assignment, an access to a small memory of the same dimensionality as the origi-

nal problem and applying modulo operations in the corresponding dimension by the size of the tile

in that dimension. exactly the same as accessing the memory containing the banking information.

This memory contains the number of accesses to a given bank given a certain exploration order.

The second corresponds to an accumulation operation where we count the number of tiles that have

happened in lower dimensions by diving the coordinate by the size of the tile in that dimension.

The constant ki is calculated off-line and contains the number of elements in each bank there are

in each tile per row, plane, cube, etc. While in native stencil code the accumulation operation can

be implemented via counters given the regular exploration of the data space, in this case, since

the center coordinates of the stencil we area accessioning depends on the prime factorization of an

address which to the best of our knowledge, will not produce a predictable pattern for any arbitrary

sequence of addresses and thus we need to perform the necessary multiplication and divisions in

real time.

Experimental Setup and Results

To test the validity of our approach we implement our method on a workstation with 16GB of

RAM, an Intel i7-4770 processor, running the latest build of Windows 10.

147

We use the code from figure 6.9 as our test cases. We try matrix sizes of 20,40,and 80 elements

for the 1D cases as a proof of concept and 1080x1080 for the 2D cases to demonstrate the real

effectiveness of our method.

for(i=1;i<n;i++)

S=f(M[i],M[2*i],M[5*i]);

for(i=1;i<n;i++)

S=f(M[i],M[3*i],M[5*i]);

for(i=1;i<n;i++)

S=f(M[i+4],M[2*i+4],M[3*i+4]]);

(a) (b) (c)

for(i=1;i<n;i++)

S=f(M[i],M[2*i],M[4*i]);

for(i=1;i<n;i++)

S=f(M[i-1],M[3*i-4],M[4*i-6]);

for(i=1;i<n;i++)

S=f(M[2*i-2],M[3*i-7],M[4*i-6]);

(d) (e) (f)

for(i=1;i<n;i++)

for(j=1;j<m;j++)

S=f(M[i,j],M[2*i,j],...

M[i,2*j],M[2*i,2*j]);

for(i=1;i<n;i++)

for(j=1;j<m;j++)

S=f(M[i,j],M[2*i-1,j],...

M[i,2*j-1],M[2*i-1,2*j-1]);

for(i=1;i<n;i++)

for(j=1;j<m;j++)

S=f(M[i-1,3*j-6],M[2*i-2,j-1],...

M[3*i-6,2*j-2]]);

(g) (h) (i)

Figure 6.9: (a),(b) and (g) Code for the Base case. (c), (d), (h) Code for the Single Intersect,

Non-Zero case. (e), (f) (i) Code for the Multiple Intersect. ©2019 IEEE

Our methodology is as follows: we first input the matrices that represent the affine, non-stencil

memory accesses and loop bounds to Matlab 2017a and we calculate the intersection points of all

the lines. Note that this is an intermediate representation of the code that can also be automatically

extracted from a piece of code by more sophisticated software such as LLVM.

Once this is done, we use the classification of the intersection point to determine which of the

three categories each memory access pattern falls into: Base, where all lines intersect at the origin.

Single Intersect, Non-Zero (SI,NZ), Where all lines intersect at one point with address different

from zero(0). And finally Multiple Intersect (MI), where the lines have multiple intersection points

148

but can be made to converge by adding an integer delay to one or more of the memory accesses.

We obtain the PFS and the stencil shape for the current problem size. We use the method from [1]

to obtain the partition factor as well as the banking scheme. Once we have the size of the Super

Tile, we can apply our pruning procedure to reduce the memory overhead. From the pruned PFS

we can obtain our LUT with the address for the translation table. We use all these parameters to

generate C code that will execute our algorithm that will be used by Vivado HLS 2015.4 to generate

Verilog code which will be then synthesized and implemented by Vivado HLx 2015.4 on a Kintex

7 xc7k160tffg-1 FPGA. We can see the results obtained in terms of memory overhead with respect

to original data space size, as well as partition factor, clock period and resource utilization in table

6.1.

149

Table 6.1: Partition factor, memory overhead, clock period, and resource utilization for all the test

cases for different problem sizes. ©2019 IEEE

Cat. Test Case Bank # Prob. Size Overhead(%) CP(nS) LUT FF’s DSP Power(mW)

Base

(a)

3 20 65 3.25 1836 2277 3 411

3 40 72.5 3.3 1856 2276 3 409

3 80 76.5 3.3 1879 2319 3 443

(b)

4 20 500 3.25 1857 2308 3 404

3 40 485 3.25 1949 2332 3 436

3 80 635 3.25 2107 2463 3 453

SI,NZ

(c)

3 20 55 3.3 1789 2240 3 405

3 40 112.5 3.35 1936 2278 3 390

3 80 73.75 3.35 1868 2319 3 425

(d)

3 20 55 3.35 1791 2241 3 392

3 40 112.5 3.35 1842 2278 3 390

3 80 73.75 3.3 1883 2319 3 4.39

MI

(e)

3 20 150 3.3 1870 2454 3 374

4 40 265 3.3 1880 2382 7 373

3 80 210 3.3 2088 2552 3 447

(f)

3 20 60 3.2 1861 2421 3 389

3 40 62.5 3.3 1902 2418 3 364

3 80 75 3.3 1960 2506 3 409

Base (g) 4 1080 33.3 3.51 5036 5444 34 557

SI,NZ (h) 4 1080 33.3 4.48 5207 6043 34 621

MI (i) 6 100 392 4.82 5981 7179 45 636

We can see that, on average, we have a memory overhead of 162% for all benchmark circuits. For

150

large problems running on systems with limited memory, this might make our method impractical

(in some cases we have over 500% memory overhead, although in some cases the overhead can

be as little as 33%). On the other hand, the partition factor achieved by our approach remains

proportional to the number of memory accesses and not a function of the problem size. Note that

different problems sizes can have different PFS, which in turn change the geometry of the resulting

stencils and also influence the partition factor that can be achieved. Also note that, in many cases,

the partition factor matches the number of memory accesses, which guarantees the optimality of

our results if data reuse is not considered.

For comparison, we run the algorithm GMP described in [3] to obtain the partition factor that

state-of-the-art methods would yield (see Table 6.2). For all non-stencil codes we consider, we

see the method GMP needs the number of independent memory banks proportional to the problem

size, while our method requires a partition factor proportional to the number of memory access.

However, the GMP method incurs no memory waste, while, depending on the nature of the memory

access, our method can have a high percentage of memory overhead. For the 2D code under our

consideration, we observe that the MI case has almost 400% memory overhead. This clears shows

the price we need to pay in order to keep the partition factor and banking interconnect simple

enough to implement for a Quasi-Stencil code. Because of the large number of banks, we were

unable to implement the algorithm from [3] for the 2D test kernels, which corresponds to more

realistic applications.

151

Table 6.2: Partition factor for our method vs GMP for all considered problem sizes. Test cases

(a)-(f) 20x1,40x1,80x1. (g)-(h) 1080x1080. (i) 100x100. ©2019 IEEE

Method (a) (b) (c) (d) (e) (f) (g) (h) (i)

Ours 3/3/3 4/3/3 3/3/3 3/3/3 3/4/3 3/3/3 4 4 6

GMP
20/40/ 20/40/ 20/40/ 20/40/ 20/40/ 20/40/ 1080 1080 100

80 80 80 80 80 80

Due to the lack of implementable methodologies to ensure parallel and conflict-free memory access

for non-stencil code, we inputted the kernels as naive C code into Vivado HLS 2015.4 to obtain

a point of reference for our results. We observed 2 behaviors: If no pragmas are given to the

software, then the HLS tool resorts to data duplication. This yields a higher usage of BRAM

(as many times as accesses the pattern has) but allows to keep a clock period that is close to the

minimum that can be implemented on the FPGA (for our case, this was close to 2.8ns) and an

unitary Initiation Interval (II). Data duplication also allows for extremely low resource utilization,

because it only needs LUTs to perform simple arithmetic operations to calculate the indices of

the memory accesses during every iteration. However, data duplication also means a sub-optimal

utilization of on-chip resource since it cannot bring enough data during every iteration from off-

chip in order to reserve space for the duplicates. As a consequence, off-chip accesses become quite

costly in terms of memory access latency. The second behavior was observed when we explicitly

instructed the HLS tool to avoid data duplication, as is the case when the matrix was forced to be

stored on a ROM implemented using a fixed structure of BRAM through using pragmas. In this

case, the software simply performed sequential memory access to the matrix, one per access, and

did not try any other optimization. Therefore, as in the previous case, its hardware utilization and

clock period are kept relatively low, but its initiation interval II has been increased to the number

152

of accesses during each kernel iteration.

In contrast, our methodology, with a small increase of its clock period due to its increased com-

plexity in logic, can reduce the total number of clock cycles it takes to complete all the memory

accesses to just one, yielding a very signification speed up, especially for memory patterns with

higher access count. We believe that, if the above two behaviors are left unconstrained, the ex-

isting HLS tool, although taking the computationally least expensive route, will only achieve a

sub-optimal utilization of on-chip memory resource and off-chip bandwidth, which is usually the

bottleneck of the system. If better performance is desired, the programmer needs to carefully guide

the software with pragmas or manually modifying the code to implement more complex algorithms

based on memory partition.

153

CHAPTER 7: CONCLUSION AND FUTURE WORK

Conclusion

In conclusion, we have achieved our objective of compiling and improving upon our previously

published work and have presented it in a coherent manner that showcases the evolution of our

approaches.

In this dissertation we have updated the literature review to include additional relevant references

related to memory banking and partitioning for both stencil and non-stencil kernels as well as

expended the literature searched to include research done in the compiler community which served

as an inspiration to some of the developed algorithms. The additions to the literature review also

include newer work that directly tries to tackle the same problems addressed in our previous work

but for several reasons, including but not limited to time constraint and later publication, were not

included in our original analysis. We compared our work to current state-of-the-art algorithms at

the time of publication of this dissertation to ensure the validity and relevance of out algorithms

still hold.

We have also condensed and summarized the work done in our geometric based approach inspired

in tessellation from [25] and [17] to a single chapter. Mostly based in the 2017 paper, chapter 3

consolidates our findings and algorithms developed for our tessellation based methodology to find-

ing a usable banking scheme for stencil computations that ensures a conflict-free parallel memory

access. The chapter not only contains the most recent results in terms of memory waste, resource

utilization, and clock period, but also contains the algorithm to automatically find the optimal block

size based in loop unrolling and more detailed explanations of the algorithm.

One of the major contributions of this dissertation is the additional analysis performed in our

154

graph-based approach for obtaining optimal banking schemes for stencil computations. First, using

transitive edge reductions, an analysis technique applied to the original ESG, we were able to

naively include data reuse analysis to the algorithm. Data reuse is a very popular and common

technique used to improve the performance of memory subsystems and better utilize the available

bandwidth. Incorporating this analysis we are able to reduce the partition factor even below the

number of accesses, which for stencil kernels without data reuse it is considered optimal. We have

also expanded the analysis of the algorithms applicable to our methods and we have developed a

methodology based around defective coloring that can again, natively model the behavior of multi-

port memories. Allowing for memories with more than one port can reduce the number of required

memory banks for conflict-free parallel memory access since some of the simultaneous accesses

now do not have to be handled exclusively by placing memory locations in different banks but also

simply by using a different port in the same bank. Together, data reuse and defective coloring can

reduce the partition factor required for a valid banking scheme significantly, reducing th complexity

fo the interconnect and thus reducing resource utilization and improving performance.

Lastly we improved our testing emthodlogy and revised the results obtained for our approaches to

solve the memory banking for non-stencil computations in both our graph based approach and our

non-linear transformation aprproach.

Future Work

Despite being able to find the optimal partition factor for stencil computations, and even going

beyond that when including data reuse analysis, with our graph-based approach, several work such

as [35] and [32] focus instead on generating whole micro-architectures that fully utilize the infor-

mation available at compile time and the regularity not only in access shape but memory access

pattern itself to generate higly efficient memory subsystems that exploit data reuse opportunities.

155

In [35] they are capable of using just a singe bank, at the cost of long reuse buffers proportional

to the problem size, to do the conflict-free memory partitioning for any stencil. And while [32]

circumvents this problem by using more banks, the number of banks depends on the geometry

of the stencil. One line of research is to try to obtain the benefits of both approaches, finding a

micro-architecture that with a constant number of banks, it can do fully parallel conflict-free mem-

ory banking of any stencil computation, keeping the buffer sizes only proportional to the stencil

size and not the problem size. To do this, one can take advantage of techniques widely used in

the compiler work where one can take advantage of certain properties of stencil computation to

re-order the iteration order, improving both temporal and spatial data locality.

On the other hand, although effective in some cases, our non-linear transformation approach to

finding the optimal partition scheme for non-stencil code is very limited and only solves the prob-

lem in a small sub-set of affine forms non-stencil code can take. Because of this another line of re-

search possible to explore is to use the knowledge gained form our graph theory-based approaches

for stencils and non-stencils to analyze the conflict graph of any non-stencil kernels, particularly

those generated by affine accesses since we have additional information at compile time, and find

a way to convert or map it to a stencil generated graph which based on our previous work we know

how to find the optimal partition scheme,

156

LIST OF REFERENCES

[1] J. Escobedo and M. Lin, “Graph-Theoretically Optimal Memory Banking for Stencil-Based

Computing Kernels,” in Proceedings of the 2018 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, FPGA ’18, (New York, NY, USA), pp. 199–208, ACM,

2018.

[2] J. Escobedo and M. Lin, “Extracting Data Parallelism in Non-stencil Kernel Computing by

Optimally Coloring Folded Memory Conflict Graph,” in Proceedings of the 55th Annual

Design Automation Conference, DAC ’18, (New York, NY, USA), pp. 156:1—-156:6, ACM,

2018.

[3] Y. Wang, P. Li, and J. Cong, “Theory and Algorithm for Generalized Memory Partitioning in

High-level Synthesis,” in Proceedings of the 2014 ACM/SIGDA International Symposium on

Field-programmable Gate Arrays, FPGA ’14, pp. 199–208, 2014.

[4] C. Carvalho, “The gap between processor and memory speeds,” Icca, pp. 27–34, 2002.

[5] P. V. Sandt, Y. Chronis, and J. M. Patel, “Efficiently Searching In-Memory Sorted Arrays:

Revenge of the Interpolation Search?,” p. 18.

[6] B. da Silva, A. Braeken, E. H. D’Hollander, and A. Touhafi, “Performance Modeling for

FPGAs: Extending the Roofline Model with High-level Synthesis Tools,” Int. J. Reconfig.

Comput., vol. 2013, pp. 7:7—-7:7, jan 2013.

[7] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful Visual Performance

Model for Multicore Architectures,” Commun. ACM, vol. 52, pp. 65–76, apr 2009.

[8] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, “Feature detectors - Sobel edge detector,”

2003.

157

[9] H. D. Shapiro, “Theoretical Limitations on the Efficent Use of Parallel Memories,” IEEE

Transactions on Computers, vol. c-27, pp. 421–428, may 1978.

[10] H. A. G. Wijshoff and J. V. Leeuwen, “Arbitrary versus Periodic Storage Schemes and Tes-

sellations of the Plane Using One Type of Polyomino,” Information and Control, vol. 62,

pp. 1–25, 1984.

[11] H. A. G. Wijshoff, J. Van Leeuwen, and J. V. Leeuwen, “On Linear Skewing Schemes and

d-Ordered Vectors,” IEEE Transactions on Computers, vol. C-36, no. 2, pp. 233–239, 1987.

[12] H. A. G. Wijshoff, Data Organization in Parallel Computers. Springer US, 1989.

[13] J. Cong, W. Jiang, B. Liu, and Y. Zou, “Automatic Memory Partitioning and Scheduling for

Throughput and Power Optimization,” in IEEE/ACM International Conference on Computer-

Aided Design Digest of Technical Papers, pp. 697–704, jun 2009.

[14] C. Meng, S. Yin, P. Ouyang, L. Liu, and S. Wei, “Efficient memory partitioning for parallel

data access in multidimensional arrays,” in 2015 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC), (New York, New York, USA), pp. 1–6, ACM Press, jun 2015.

[15] A. Darte, R. Schreiber, and G. Villard, “Lattice-based memory allocation,” IEEE Transac-

tions on Computers, vol. 54, pp. 1242–1257, oct 2005.

[16] A. Cilardo and L. Gallo, “Improving Multibank Memory Access Parallelism with Lattice-

Based Partitioning,” ACM Trans. Archit. Code Optim., vol. 11, pp. 45:1—-45:25, jan 2015.

[17] J. Escobedo and M. Lin, “Tessellating Memory Space for Parallel Access,” in Proceedings

of the Asia and South Pacific Design Automation Conference, ASP-DAC, vol. 1, pp. 75–80,

IEEE, jan 2017.

158

[18] Y. Zhou, K. M. Al-Hawaj, and Z. Zhang, “A New Approach to Automatic Memory Bank-

ing Using Trace-Based Address Mining,” in Proceedings of the 2017 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, FPGA ’17, (New York, NY, USA),

pp. 179–188, ACM, 2017.

[19] Y. Zou and M. Lin, “Graph-morphing: Exploiting hidden parallelism of non-stencil compu-

tation in high-level synthesis,” in Proceedings - Design Automation Conference, (New York,

New York, USA), pp. 1–6, ACM Press, 2019.

[20] J. Escobedo and M. Lin, “Exploiting Irregular Memory Parallelism in Quasi-Stencils

through Nonlinear Transformation,” in The 27th IEEE International Symposium On Field-

Programmable Custom Computing Machines, pp. 236–244, IEEE, apr 2019.

[21] P. Zhang, P. Sadayappan, J. Cong, L. Angeles, L.-N. Pouchet, P. Zhang, P. Sadayappan, and

J. Cong, “Polyhedral-based Data Reuse Optimization for Configurable Computing,” in Pro-

ceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

FPGA ’13, (New York, NY, USA), pp. 29–38, ACM, 2013.

[22] M. Peemen, B. Mesman, and H. Corporaal, “Inter-tile reuse optimization applied to band-

width constrained embedded accelerators,” in 2015 Design, Automation Test in Europe Con-

ference Exhibition (DATE), pp. 169–174, mar 2015.

[23] M. Milford and J. McAllister, “Constructive Synthesis of Memory-Intensive Accelerators

for FPGA From Nested Loop Kernels,” IEEE Transactions on Signal Processing, vol. 64,

pp. 4152–4165, aug 2016.

[24] J. Liu, J. Wickerson, and G. A. Constantinides, “Tile size selection for optimized memory

reuse in high-level synthesis,” in 2017 27th International Conference on Field Programmable

Logic and Applications (FPL), pp. 1–8, sep 2017.

159

[25] J. Escobedo and M. Lin, “Tessellation-based multi-block memory mapping scheme for high-

level synthesis with FPGA,” in Proceedings of the 2016 International Conference on Field-

Programmable Technology, FPT 2016, pp. 125–132, IEEE, dec 2017.

[26] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory Partitioning for Multidimensional

Arrays in High-level Synthesis,” in Proceedings of the 50th Annual Design Automation Con-

ference, DAC ’13, (New York, NY, USA), pp. 12:1—-12:8, ACM, 2013.

[27] A. Wigderson, “Improving the Performance Guarantee for Approximate Graph Coloring,”

Journal of the Association for Computing Machinery, vol. 30, pp. 729–735, 1983.

[28] E. Scheinerman, “Matgraph.” Online, mar 2008.

[29] C. Uiyyasathian and S. Saduakdee, “Perfect Glued Graphs at Complete Clones,” Journal of

Mathematics Research, vol. 1, no. 1, pp. 25–30, 2009.

[30] N. Biggs, Algebraic Graph Theory. Cambridge University Press, 2nd ed., 1993.

[31] J. Su, F. Yang, X. Zeng, D. Zhou, and J. Chen, “Efficient Memory Partitioning for Parallel

Data Access in FPGA via Data Reuse,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 36, pp. 1674–1687, oct 2017.

[32] W. Li, F. Yang, H. Zhu, X. Zeng, and D. Zhou, “An Efficient Data Reuse Strategy for Multi-

pattern Data Access,” in Proceedings of the International Conference on Computer-Aided

Design, ICCAD ’18, (New York, NY, USA), pp. 118:1—-118:8, ACM, 2018.

[33] N. Christofides, “An algorithm for the chromatic number of a graph,” The computer journal,

vol. 14 (1), pp. 38–39, 1971.

[34] S. Fitzpatrick and L. Meertens, “Soft, Real-Time, Distributed Graph Coloring using Decen-

tralized, Synchronous, Stochastic, Iterative-Repair, Anytime Algorithms,” tech. rep., Kestrel

Institute Technical Report KES.U.01.05, 2001.

160

[35] J. Cong, P. Li, B. Xiao, and P. Zhang, “An Optimal Microarchitecture for Stencil Computation

Acceleration Based on Nonuniform Partitioning of Data Reuse Buffers,” IEEE TRANSAC-

TIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,

pp. 77:1—-77:6, 2016.

161

	Extracting Data-Level Parallelism in High-Level Synthesis for Reconfigurable Architectures
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Problem background
	Motivation
	Contributions
	Dissertation Outline

	CHAPTER 2: LITERATURE REVIEW
	CHAPTER 3: TESSELLATION BASED APPROACH FOR OPTIMAL MEMORY BANKING IN STENCILS
	Motivating Example
	Problem formulation
	Motivational observation
	Overall Methodology
	Block size calculation
	Tile construction
	Tessellation
	Super-tile construction
	Intra-Bank Offset

	Results and Analysis

	CHAPTER 4: GRAPH BASED APPROACH FOR OPTIMAL MEMORY BANKING IN STENCILS
	Motivational example
	Problem Formulation and Overall Solving Strategy
	Proof of Algorithmatic Optimality and Hardware Implementation Efficiency
	Minimum Memory Bank Number
	Graph Repeatability

	Data Reuse
	Modeling Multi-port memories
	Results and Analysis

	CHAPTER 5: GRAPH BASED APPROACH FOR MEMORY BANKING IN NON-STENCILS
	Motivational example
	Problem Definition
	Conflict minimization
	Methodology
	Results

	CHAPTER 6: NON-LINEAR TRANSFORMATION BASED APPROACH FOR OPTIMAL MEMORY BANKING IN QUASI-STENCILS
	Motivational example
	Overall Methodology
	Quasi-stencil: Definition and Criteria
	Generalizing Quasi-Stencil
	Single intersect point at k = 0, i =0
	Single intersect point at k =0
	Multiple intersect points with integer time delay

	Prime Factorization Space
	Transformed data domain
	Overhead Reduction
	Implementation

	Experimental Setup and Results

	CHAPTER 7: CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	LIST OF REFERENCES

