1,837 research outputs found

    An Efficient Method for Quantifying the Aggregate Flexibility of Plug-in Electric Vehicle Populations

    Full text link
    Plug-in electric vehicles (EVs) are widely recognized as being highly flexible electric loads that can be pooled and controlled via aggregators to provide low-cost energy and ancillary services to wholesale electricity markets. To participate in these markets, an EV aggregator must encode the aggregate flexibility of the population of EVs under their command as a single polytope that is compliant with existing market rules. To this end, we investigate the problem of characterizing the aggregate flexibility set of a heterogeneous population of EVs whose individual flexibility sets are given as convex polytopes in half-space representation. As the exact computation of the aggregate flexibility set -- the Minkowski sum of the individual flexibility sets -- is known to be intractable, we study the problems of computing maximum-volume inner approximations and minimum-volume outer approximations to the aggregate flexibility set by optimizing over affine transformations of a given convex polytope in half-space representation. We show how to conservatively approximate the pair of maximum-volume and minimum-volume set containment problems as linear programs that scale polynomially with the number and dimension of the individual flexibility sets. The class of approximations methods provided in this paper generalizes existing methods from the literature. We illustrate the improvement in approximation accuracy achievable by our methods with numerical experiments.Comment: 10 pages, 4 figure

    A Framework for Flexible Loads Aggregation

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Charging load pattern extraction for residential electric vehicles: a training-free nonintrusive method

    Get PDF
    Extracting the charging load pattern of residential electric vehicle (REV) will help grid operators make informed decisions in terms of scheduling and demand-side response management. Due to the multistate and high-frequency characteristics of integrated residential appliances from the residential perspective, it is difficult to achieve accurate extraction of the charging load pattern. To deal with that, this article presents a novel charging load extraction method based on residential smart meter data to noninvasively extract REV charging load pattern. The proposed algorithm harnesses the low-frequency characteristics of the charging load pattern and applies a two-stage decomposition technique to extract the characteristics of the charging load. The two-stage decomposition technique mainly includes: the trend component of the charging load being decomposed by seasonal and trend decomposition using loess method, and the low-frequency approximate component being decomposed by discrete wavelet technology. Furthermore, based on the extracted characteristics, event monitoring, and dynamic time warping is applied to estimate the closest charging interval and amplitude. The key features of the proposed algorithm include 1) significant improvement in extraction accuracy; 2) strong noise immunity; 3) online implementation of extraction. Experiments based on ground truth data validate the superiority of the proposed method compared to the existing ones

    Optimal Strategy to Exploit the Flexibility of an Electric Vehicle Charging Station

    Get PDF
    The increasing use of electric vehicles connected to the power grid gives rise to challenges in the vehicle charging coordination, cost management, and provision of potential services to the grid. Scheduling of the power in an electric vehicle charging station is a quite challenging task, considering time-variant prices, customers with different charging time preferences, and the impact on the grid operations. The latter aspect can be addressed by exploiting the vehicle charging flexibility. In this article, a specific definition of flexibility to be used for an electric vehicle charging station is provided. Two optimal charging strategies are then proposed and evaluated, with the purpose of determining which strategy can offer spinning reserve services to the electrical grid, reducing at the same time the operation costs of the charging station. These strategies are based on a novel formulation of an economic model predictive control algorithm, aimed at minimising the charging station operation cost, and on a novel formulation of the flexibility capacity maximisation, while reducing the operation costs. These formulations incorporate the uncertainty in the arrival time and state of charge of the electric vehicles at their arrival. Both strategies lead to a considerable reduction of the costs with respect to a simple minimum time charging strategy, taken as the benchmark. In particular, the strategy that also accounts for flexibility maximisation emerges as a new tool for maintaining the grid balance giving cost savings to the charging stations

    Statistical characterisation of the real transaction data gathered from electric vehicle charging stations

    Get PDF
    Abstract Despite the many environmental benefits that a massive diffusion of electric vehicles (EVs) could bring to the urban mobility and to society as a whole, numerous are the challenges that this could pose to the electricity distribution grid, particularly to its operation and development. While uncoordinated management of EVs can lead to load imbalances, current or voltage variation excess and steep power requests, properly designed and well-coordinated integration approaches can in contrast provide flexibility, hence value, to the whole electrical system. Such step can be achieved only if real data are available and real drivers' behaviours are identified. This paper is based on a real dataset of 400,000 EV charging transactions. It shows and analyses an important set of key figures (charge time, idle time, connected time, power, and energy) depending on driver's behaviour in the Netherlands. From these figures, it emerges a key role of the uncertainty of the relevant variables due to the drivers' behaviour. This requires a statistical characterisation of these variables, which generally leads to multi-modal probability distributions. Thereby, this paper develops a Beta Mixture Model to represent these multi-modal probability distributions. Based on the emerged statistical facts, a number of results and suggestions are provided, in order to contribute to the important debate on the role of EVs to move to a fully decarbonised society

    Optimal and scalable management of smart power grids with electric vehicles

    Get PDF

    Review of energy system flexibility measures to enable high levels of variable renewable electricity

    Get PDF
    The paper reviews different approaches, technologies, and strategies to manage large-scale schemes of variable renewable electricity such as solar and wind power. We consider both supply and demand side measures. In addition to presenting energy system flexibility measures, their importance to renewable electricity is discussed. The flexibility measures available range from traditional ones such as grid extension or pumped hydro storage to more advanced strategies such as demand side management and demand side linked approaches, e.g. the use of electric vehicles for storing excess electricity, but also providing grid support services. Advanced batteries may offer new solutions in the future, though the high costs associated with batteries may restrict their use to smaller scale applications. Different “P2Y”-type of strategies, where P stands for surplus renewable power and Y for the energy form or energy service to which this excess in converted to, e.g. thermal energy, hydrogen, gas or mobility are receiving much attention as potential flexibility solutions, making use of the energy system as a whole. To “functionalize” or to assess the value of the various energy system flexibility measures, these need often be put into an electricity/energy market or utility service context. Summarizing, the outlook for managing large amounts of RE power in terms of options available seems to be promising.Peer reviewe
    • …
    corecore