4 research outputs found

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    Stronger Lower Bounds and Randomness-Hardness Trade-Offs Using Associated Algebraic Complexity Classes

    Get PDF
    We associate to each Boolean language complexity class C the algebraic class a·C consisting of families of polynomials {fn} for which the evaluation problem over Z is in C. We prove the following lower bound and randomness-to-hardness results: 1. If polynomial identity testing (PIT) is in NSUBEXP then a·NEXP does not have poly size constant-free arithmetic circuits. 2. a·NEXP RP does not have poly size constant-free arithmetic circuits. 3. For every fixed k, a·MA does not have arithmetic circuits of size nk. Items 1 and 2 strengthen two results due to Kabanets and Impagliazzo [7]. The third item improves a lower bound due to Santhanam [11]. We consider the special case low-PIT of identity testing for (constant-free) arithmetic circuits with low formal degree, and give improved hardness-to-randomness trade-offs that apply to this case. Combining our results for both directions of the hardness-randomness connection, we demonstrate a case where derandomization of PIT and proving lower bounds are equivalent. Namely, we show that low-PIT ∈ i.o-NTIME[2no(1)]/no(1) if and only if there exists a family of multilinear polynomials in a·NE/lin that requires constant-free arithmetic circuits of super-polynomial size and formal degree
    corecore