804 research outputs found

    Noise mapping based on participative measurements

    No full text
    The high temporal and spatial granularities recommended by the European regulation for the purpose of environmental noise mapping leads to consider new alternatives to simulations for reaching such information. While more and more European cities deploy urban environmental observatories, the ceaseless rising number of citizens equipped with both a geographical positioning system and environmental sensors through their smartphones legitimates the design of outsourced systems that promote citizen participatory sensing. In this context, the OnoM@p system aims at offering a framework for capitalizing on crowd noise data recorded by inexperienced individuals by means of an especially designed mobile phone application. The system fully rests upon open source tools and interoperability standards defined by the Open Geospatial Consortium. Moreover, the implementation of the Spatial Data Infrastructure principle enables to break up as services the various business modules for acquiring, analysing and mapping sound levels. The proposed architecture rests on outsourced processes able to filter outlier sensors and untrustworthy data, to cross- reference geolocalised noise measurements with both geographical and statistical data in order to provide higher level indicators, and to map the collected and processed data based on web services

    Seamless Interactions Between Humans and Mobility Systems

    Full text link
    As mobility systems, including vehicles and roadside infrastructure, enter a period of rapid and profound change, it is important to enhance interactions between people and mobility systems. Seamless human—mobility system interactions can promote widespread deployment of engaging applications, which are crucial for driving safety and efficiency. The ever-increasing penetration rate of ubiquitous computing devices, such as smartphones and wearable devices, can facilitate realization of this goal. Although researchers and developers have attempted to adapt ubiquitous sensors for mobility applications (e.g., navigation apps), these solutions often suffer from limited usability and can be risk-prone. The root causes of these limitations include the low sensing modality and limited computational power available in ubiquitous computing devices. We address these challenges by developing and demonstrating that novel sensing techniques and machine learning can be applied to extract essential, safety-critical information from drivers natural driving behavior, even actions as subtle as steering maneuvers (e.g., left-/righthand turns and lane changes). We first show how ubiquitous sensors can be used to detect steering maneuvers regardless of disturbances to sensing devices. Next, by focusing on turning maneuvers, we characterize drivers driving patterns using a quantifiable metric. Then, we demonstrate how microscopic analyses of crowdsourced ubiquitous sensory data can be used to infer critical macroscopic contextual information, such as risks present at road intersections. Finally, we use ubiquitous sensors to profile a driver’s behavioral patterns on a large scale; such sensors are found to be essential to the analysis and improvement of drivers driving behavior.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163127/1/chendy_1.pd

    Machine Learning Approaches to Road Surface Anomaly Assessment Using Smartphone Sensors

    Get PDF
    Road surface quality is an essential component of roadway infrastructure that leads to better driving standards and reduces risk of traffic accident. Traditional road condition monitoring systems fall short of current need for quick responses to maintain road quality. Several alternative systems have been proposed that utilize sensors mounted on vehicles and with the ubiquitous use of smartphone for personal use and navigation, smartphone based road condition assessment has gained prominence. We propose to analyze different multiclass supervised machine learning techniques to effectively classify road surface conditions using accelerometer, gyroscope and GPS data collected from smartphones. Our work focusses on classification of three main class labels- smooth road, pothole and deep transverse cracks. We investigate our conjecture that using features from all three axes of the sensors provide more accurate results as compared to using features from only one axis. We also investigate the performance of deep neural networks to classify road conditions with and without explicit manual feature extraction. Our results consistently show that models trained with features from all axes of the smartphone sensors perform better than models that use only one axis. This shows that there is information in the vibration signals along all three axis for road anomalies. We also observe that the use of neural networks provide significantly accurate data classification. The approaches discussed here can be implemented on a larger scale to monitor road for defects that present a safety risk to commuters as well as provide maintenance information to relevant authorities

    Delivering IoT Services in Smart Cities and Environmental Monitoring through Collective Awareness, Mobile Crowdsensing and Open Data

    Get PDF
    The Internet of Things (IoT) is the paradigm that allows us to interact with the real world by means of networking-enabled devices and convert physical phenomena into valuable digital knowledge. Such a rapidly evolving field leveraged the explosion of a number of technologies, standards and platforms. Consequently, different IoT ecosystems behave as closed islands and do not interoperate with each other, thus the potential of the number of connected objects in the world is far from being totally unleashed. Typically, research efforts in tackling such challenge tend to propose a new IoT platforms or standards, however, such solutions find obstacles in keeping up the pace at which the field is evolving. Our work is different, in that it originates from the following observation: in use cases that depend on common phenomena such as Smart Cities or environmental monitoring a lot of useful data for applications is already in place somewhere or devices capable of collecting such data are already deployed. For such scenarios, we propose and study the use of Collective Awareness Paradigms (CAP), which offload data collection to a crowd of participants. We bring three main contributions: we study the feasibility of using Open Data coming from heterogeneous sources, focusing particularly on crowdsourced and user-contributed data that has the drawback of being incomplete and we then propose a State-of-the-Art algorith that automatically classifies raw crowdsourced sensor data; we design a data collection framework that uses Mobile Crowdsensing (MCS) and puts the participants and the stakeholders in a coordinated interaction together with a distributed data collection algorithm that prevents the users from collecting too much or too less data; (3) we design a Service Oriented Architecture that constitutes a unique interface to the raw data collected through CAPs through their aggregation into ad-hoc services, moreover, we provide a prototype implementation

    A Two-Level Approach to Characterizing Human Activities from Wearable Sensor Data

    Get PDF
    International audienceThe rapid emergence of new technologies in recent decades has opened up a world of opportunities for a better understanding of human mobility and behavior. It is now possible to recognize human movements, physical activity and the environments in which they take place. And this can be done with high precision, thanks to miniature sensors integrated into our everyday devices. In this paper, we explore different methodologies for recognizing and characterizing physical activities performed by people wearing new smart devices. Whether it's smartglasses, smartwatches or smartphones, we show that each of these specialized wearables has a role to play in interpreting and monitoring moments in a user's life. In particular, we propose an approach that splits the concept of physical activity into two sub-categories that we call micro-and macro-activities. Micro-and macro-activities are supposed to have functional relationship with each other and should therefore help to better understand activities on a larger scale. Then, for each of these levels, we show different methods of collecting, interpreting and evaluating data from different sensor sources. Based on a sensing system we have developed using smart devices, we build two data sets before analyzing how to recognize such activities. Finally, we show different interactions and combinations between these scales and demonstrate that they have the potential to lead to new classes of applications, involving authentication or user profiling
    • …
    corecore