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ABSTRACT 

 

 Road surface quality is an essential component of roadway infrastructure that leads 

to better driving standards and reduces risk of traffic accident. Traditional road condition 

monitoring systems fall short of current need for quick responses to maintain road quality. 

Several alternative systems have been proposed that utilize sensors mounted on vehicles 

and with the ubiquitous use of smartphone for personal use and navigation, smartphone 

based road condition assessment has gained prominence. 

We propose to analyze different multiclass supervised machine learning 

techniques to effectively classify road surface conditions using accelerometer, gyroscope 

and GPS data collected from smartphones. Our work focusses on classification of three 

main class labels- smooth road, pothole and deep transverse cracks. We investigate our 

conjecture that using features from all three axes of the sensors provide more accurate 

results as compared to using features from only one axis. We also investigate the 

performance of deep neural networks to classify road conditions with and without explicit 

manual feature extraction. Our results consistently show that models trained with features 

from all axes of the smartphone sensors perform better than models that use only one axis. 

This shows that there is information in the vibration signals along all three axis for road 

anomalies. We also observe that the use of neural networks provide significantly accurate 

data classification. The approaches discussed here can be implemented on a larger scale 

to monitor road for defects that present a safety risk to commuters as well as provide 

maintenance information to relevant authorities. 
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1. INTRODUCTION 

  

Road condition monitoring is a challenging worldwide problem in the field of 

transportation infrastructure [1] [2]. Poor road surface conditions lead to high repair and 

maintenance costs, creates a risk of damage to vehicles and increases chances of traffic 

accidents. Thousands of people are hurt or killed each year on roads and highways due to 

poor road quality [3]. In 2015, the United States Congress passed the Surface 

Transportation Reauthorization and Reform Act for the maintenance of federal highways 

over a five year period with a budget of $46 billion per year. In their survey they noted 

that nearly 10,000 traffic fatalities each year involve poor road conditions [4]. 

Maintaining good road quality is therefore essential not only to support an efficient 

road network but also to reduce traffic accidents. However, road surface maintenance is 

challenging due to weather conditions, heavy traffic and high costs of manpower. Due to 

the need of frequent repairs to prevent road quality from deteriorating, a reliable and low-

latency road condition monitoring system is required. Traditional monitoring systems 

collect data from vehicles equipped with expensive road monitoring sensors such as 

LIDAR and Ground Penetrating Radar (GPR) [5]. Various equipment used for measuring 

road conditions is surveyed in [6]. However these equipment are expensive, costing 

between $8,000 and $220,000. Due to limitations in cost, such systems cannot be 

effectively deployed on a large scale road network to regularly check for need for repairs. 

Another approach to road maintenance is to visually inspect road conditions and record 

data concerning the condition of pavements. This can be used by itself or in combination 
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with ride quality, structural adequacy, skid resistance, climate, and traffic data to assist in 

describing the overall condition of the state-maintained highway system [7]. 

According to the TxDOT’s Pavement Management Information System Rater’s 

Manual, pavement distress for asphalt flexible pavement sections are mainly categorized 

into eight types: 

1) Rutting 

2) Patching 

3) Block Cracking 

4) Alligator Cracking 

5) Longitudinal Cracking 

6) Transverse Cracking 

7) Raveling 

8) Potholes 

Rutting is the road condition that is a longitudinal surface depression in a wheel path 

caused by consolidation or lateral movement of the pavement material due to traffic loads 

as shown in Figure 1. Rutting is classified from shallow rutting to Failure rutting that 

ranges from a depression of 0.25 inches to 2.0 inches or greater respectively. Patches are 

repairs made to pavement distress as shown in Figure 2. 
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Figure 1. Instance of Deep Rutting and Severe Rutting. Reprinted from [7]. 

 

 

Figure 2. Patching of Road to Repair Pavement Distress. Reprinted from [7]. 

Block cracks form irregular blocks and are a result of age hardening of the asphalt coupled 

with shrinkage of asphalt concrete during cold weather. They consist of interconnecting 

cracks that divide the pavement surface into approximately rectangular pieces. Alligator 

cracks also known as fatigue cracks, is formed whenever the pavement is repeatedly flexed 

under traffic load. Although they resemble block cracks, they are smaller in shape and 

resemble patterns found on an alligator’s skin. Instances of block cracking and Alligator 

cracking is shown in Figure 3. 
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Figure 3. Instance of Block Cracking and Alligator Cracking. Reprinted from [7]. 

 

Longitudinal cracks occur as a result of poorly constructed paving lane joints, thermal 

shrinkage, inadequate support or reflection from underlying layers. In contrast, Transverse 

cracking consists of cracks or breaks that travel at right angles to the pavement centerline. 

They usually create unevenness in the pavement surface that causes faster pavement 

deterioration. 

  

Figure 4. Instance of Longitudinal Cracking and Transverse Cracking. Reprinted from 

[7]. 
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Raveling is the progressive disintegration of the surface due to dislodgement of aggregate 

particles. Potholes are usually formed due to fatigue of road surface that have a 

width/length of 4 to 12 inches and 0 to 4 inches. 

  

Figure 5. Instances of Ravelling and Pothole. Reprinted from [7]. 

 

As an alternative to traditional road condition monitoring systems, several 

vehicular sensing systems have been proposed and evaluated to determine road conditions 

and identify certain road defects. The following section provides a comprehensive 

assessment of exiting literature regarding alternative system developed or proposed to 

monitor road condition. 

 

1.1 Literature Survey 

 ‘Potholes Marker And More’ [8] and ‘Fill That Hole’ [9] are applications 

developed where users take photographs of potholes and submit them to a central server. 

They are not practical on a large scale as users are reluctant to stop and record the pothole 
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locations. PAVEMON [10] is a GIS web-based pavement monitoring system by VOTERS 

that uses data from multiple sensors such as accelerometer, microphone, tire pressure 

sensor, imaging, Radar etc. to evaluate different road distress parameters. Despite its 

capabilities, the need for a specialized vehicular setup restricts the use of this system as a 

platform for mass data collection platform. Nericell [11] and TrafficSense [12] are systems 

developed by Microsoft Research India that use Windows smartphone sensors such as 

accelerometer, microphone and GPS to detect potholes using simple threshold-based 

heuristics. However, these thresholds are arrived at based on observation and hence remain 

very subjective. Wolverine [13] detects road bumps based on change in accelerometer 

readings along the direction of gravity. However, the thresholds for Wolverine are 

determined using mean and standard deviation only, ignoring higher order statistics. 

Pothole Patrol (P2) [1], developed at MIT, is based on a simple machine learning approach 

to analyze patterns in accelerometer data using X–Z ratio and Speed-Z ratio. The system 

reads accelerometer data from three different locations and requires an embedded PC that 

records the data. 

Another approach to assessing road conditions is to measure the International 

Roughness Index (IRI) using a quarter-car vehicle math model [14]. IRI is used to define 

a characteristic of the longitudinal profile of the traveled wheel path and constitutes a 

standardized roughness measurement. It is most commonly expressed in units of meters 

per kilometer (m/km) or millimeters per meter (mm/m). The IRI is based on the average 

rectified slope (ARS), which is a filtered ratio of a standard vehicle’s accumulated 

suspension motion (in mm, inches, etc.) divided by the distance traveled by the vehicle 
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during the measurement (km, mi, etc.). Roadroid [15] is a commercially available, 

Android smartphone application that is based on smartphone sensors for monitoring road 

conditions and classifying them as good, satisfactory, unsatisfactory and poor based on 

estimated IRI. It offers two solutions for roughness data calculation- the estimated IRI 

(eIRI) is based on Peak and RMS vibration analysis and the calculated IRI (cIRI) is based 

on the quarter car simulation. Li et al. [16] calculates a proxy-IRI value that is linearly 

related to IRI. Although IRI is a common road roughness index measure worldwide, it 

sometimes fails to recognize isolated faults on smooth roads as it is calculated for a stretch 

of road using the road’s profile. Lepine et al. [17] [18] uses machine learning to identify 

shocks present in acceleration signals measured on road vehicles. He concludes that 

machine learning algorithms can be optimized and tuned to achieve high accuracy in 

detecting road vehicle vibration shocks. However, the road vehicle vibration signals he 

used were artificially generated using non-stationary random vibration and shock impulses 

that reproduce typical vehicle dynamic behavior. Perttunen et al. [50] uses acceleration 

signal to extract road features using Spectral analysis. SVM was used to predict three 

categories of transient event- speed bump, bump, and large pothole. Allouch et al. [19] 

uses machine learning techniques such as C4.5 Decision Tree, SVM and Naïve Bayes to 

label road conditions as ‘Smooth’ or ‘Potholed’. To optimize the feature selection process, 

a correlation-based Feature selection technique was applied to the data. Bhoraskar et al. 

[13] introduces a traffic monitoring system that uses braking and acceleration events along 

with k-means clustering and SVM to label road conditions as ‘Smooth’ or ‘Bumpy’. Nuno 

Silva et al. [20] approached the problem with data mining using Scikit-learn and Weka to 
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detect unlevelled manholes, short bumps and long bumps. Singh et al. [21] proposed using 

five separate filter and Dynamic Time Warping (DTW) techniques to detect bumps and 

potholes. The accelerometer data was collected by an Android app called ‘Smart 

Patrolling’ that are placed in the car at different locations. Several other works use similar 

techniques and focus on either estimating a roughness metric or detecting potholes only 

[22] [23] [24]. However, effective road lifecycle management requires timely maintenance 

in stages prior to pothole formation such as cracking, shoving, delamination etc. Crack 

detection using accelerometers is challenging due to its subtle vibration pattern and vehicle 

vibration noise. Several video image processing techniques have been suggested [25] [26], 

but these techniques are memory and computation intensive. With significant 

advancements in big data analytics and a push for smart cars in recent years, high volume 

of driving data can be collected from users and processed to obtain useful information. 

Crowd-sensing approaches to collect road surface vibration data can be very useful in 

continuously monitoring changes to road condition for relevant authorities. Li et al. [16] 

and Masino et al. [27] proposed the use of crowd-sensing to obtain data and classify road 

conditions. Chen et al. [24] uses crowd sensed data acquisition in their system called 

CRSM to identify potholes. However, instead of using smartphones, they use low cost 

hardware equipment like accelerometers and gyroscopes that are fixed on vehicles. 

 

1.2 Literature Survey Summary 

To summarize the literature review, there are certain areas that can be explored or 

improved for the purpose of road anomaly detection using smartphone sensors. While 
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there has been research focused on detection of potholes using smartphone collected data, 

road defects such as deep transverse cracks, rutting, shoving etc. that help in monitoring 

the lifecycle of the road have not been explored. Works that estimate road roughness 

indexes do so for a stretch of road and can miss individual faults in the road surface. The 

majority of current literature focuses on binary classifications using simple machine 

learning techniques or threshold-based heuristics. However, multiclass classification has 

not been explored for different stages of road deterioration. Accelerometer data collected 

from vehicle vibrations give a good marker to distinguish road conditions. However, data 

used for anomaly detection only focusses on vibration signals collected from acceleration 

data in the direction of gravity. Information and relationships between data samples that 

may be present in other directions orthogonal to the direction of gravity are not taken into 

consideration. Among different machine learning algorithms investigated, neural 

networks have scare implementation for the purpose of Road Condition monitoring due to 

the requirement of high quantity of good training data. As neural networks are gaining 

more prominence in the age of AI and big data mining, further investigation into neural 

networks is needed. Finally, very few studies utilize crowd-sensing as an approach to 

collect data and has high potential in the field of road surface condition monitoring. 

 

1.3 Key Focus 

 This thesis aims to analyze different machine learning techniques for multiclass 

classification to classify smooth roads, potholes and deep transverse cracks. Transverse 

cracks were chosen as they pose a higher risk to vehicle safety and have the highest 

potential to develop into bigger faults or potholes. We utilize features extracted from time 
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domain, frequency domain and wavelet domain from all three Cartesian coordinate axes 

of sensor data to train our classifiers. The effectiveness of neural networks in road 

condition monitoring is explored and compared with results from other machine learning 

techniques. The thesis shall serve as a proof of concept for a large scale crowd-sensing 

based approach to road condition monitoring using machine learning. 
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2. METHODS  

 

 Our goal is to analyze different multiclass supervised machine learning techniques 

to effectively classify road surface conditions using data collected from smartphones. We 

investigate our conjecture that using features from all three axes of the sensor provides 

more accurate results as compared to using only one axis. We also investigate the 

performance of deep neural networks to classify road conditions without explicit manual 

feature extraction. 

Our general methodology consists of five stages whose system block diagram is 

shown in Figure 6. The data acquisition stage deals with obtaining and recording data 

required for our system. The data is acquired using the accelerometer, gyroscope and GPS 

sensors present in smartphones. The data collected is then passed through a pre-processing 

stage where the raw data collected is labelled with appropriate road conditions and then 

filtered prior to extracting required features. The features extracted are then passed to the 

training stage of various machine learning algorithms like SVM, Decision Tree and Neural 

Networks to obtain a trained machine learning model. These models are then evaluated 

with various performance metrics and finally, the classification stage classifies unlabeled 

data to determine the appropriate road condition label. We then compare the performance 

of the various algorithms used and provide a conclusion to our assumptions and 

hypothesis. 
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Figure 6. Overall block diagram of the proposed system 

 

 

2.1 Data Acquisition 

To realize the system described above, an Apple iPhone 6 was chosen to collect 

accelerometer, gyroscope and GPS data. The iPhone contains two separate accelerometer 

chips- Bosch BMA280 and InvenSense MPU-6700 [28]. The InvenSense MPU-6700 

sensor operates as a six-axis combination gyroscope-accelerometer, whose specifications 

are comparable to the InvenSense MPU-6500. The chip has a specified output data rate of 

4,000 samples per second which is common for accelerometers in most smartphones 

available in the market today. Although they are capable of sampling at 4,000 samples per 

second, operating systems such as Android and iOS restrict the output data rate to reduce 

power consumption. Our initial analysis with Apple iOS version 11.2.6 shows that the 

operating system restricts the maximum sampling frequency of the accelerometer and 

gyroscope that is available to app developers through Xcode to approximately 100Hz. 
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Three different cars were used as data collection vehicles to take into consideration 

the differences in the suspension quality of different types of cars. A Ford Focus sedan, a 

Ford Focus hatchback and a Subaru Outback SUV were used to represent compact, mid-

size and SUV car types. Generally, the type and condition of the car affects the vibration 

recorded [22] [29].  An iOS app called ‘Vibration Recorder’ was developed to record 

Accelerometer and Gyroscope data at 100Hz, GPS longitude and latitude data at 1Hz and 

their corresponding Epoch/UNIX timestamps. The iPhone running the Vibration Recorder 

app was mounted to the windshield of the car with a phone mount as shown in Figure 7. 

 

 

Figure 7. Set up of the iPhone and Screenshot of the Vibration Recorder App 

 

A DJI Osmo was used to record video of the road surface to label particular road 

conditions in the pre-processing stage. The Osmo was mounted on the front of the 

vehicle’s hood and angled towards the road using a DJI Osmo Vehicle Mount. The video 
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was recorded at 720p and 60FPS to obtain clear videos of the road ahead. In order to sync 

the video with the data recorded by the Vibration Recorder, another smartphone that also 

displayed the Epoch/UNIX timestamp was placed in the field of view of the Osmo. The 

Osmo setup is shown in Figure 8 and a screenshot of its view is shown in Figure 9. 

 

Figure 8. Setup of the Osmo Camera 

 

Figure 9. Screenshot of the Osmo Setup’s Field of View 
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 The Osmo’s position and angle of elevation was measured and recorded to estimate 

the distance between the road ahead and the car tires using trigonometric relationships. A 

total of four data collection runs were conducted in and around College Station, Texas 

covering road surfaces with asphalt pavements. 

 

2.2 Data Pre-Processing 

Data acquired was pre-processed in several stages to make it more coherent and 

pragmatic. First, the acceleration data collected needed to be virtually reoriented to a 

global frame of reference to remove variations due to the phone’s position and orientation. 

The acceleration and gyroscope measurements are recorded in a three-dimensional 

Cartesian coordinate system with respect to the phone’s frame of reference as shown in 

Figure 10. To maintain uniformity and integrity of the data collected from multiple data 

runs, the phone’s frame of reference was transformed to a global frame of reference with 

respect to the ground as shown in Figure 11. 

 

Figure 10. Cartesian Co-ordinate Axes for iPhone Accelerometer and Gyroscope 
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Figure 11. Global Frame of Reference Cartesian Coordinate axes w.r.t. Car 

 

The reorientation algorithm performs accelerometer data reorientation using 

Euler’s angles, which form a representation of the spatial orientation of a certain reference 

frame as a combination of three orthogonal elemental rotations. Ideally, when a car is at 

rest on a flat surface, the acceleration values would be:  

𝑎𝑥=0 m/s2, 𝑎𝑦=9.81 m/s2 and 𝑎𝑧=0 m/s2 

Equations (1) to (4) are used to calculate two of the three Euler angles and reorient 

acceleration values to the global frame of reference [30]. 𝑎′𝑥, 𝑎′𝑦 𝑎′𝑧 are the acceleration 

values with respect to the global reference frame while 𝛼 and 𝛽 are the roll and pitch 

angles respectively. Figure 12 shows the plot of the acceleration data of a 1.5s window 

before and after reorientation. 

𝛼 = tan−1 (
𝑎𝑦

𝑎𝑧
)              𝛽 = tan−1 (

−𝑎𝑥

√(𝑎𝑦)2+(𝑎𝑧)2
)           (1) 
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𝑎′𝑥 = cos(𝛽) 𝑎𝑥 + sin(𝛽) sin(𝛼) 𝑎𝑦 + cos(𝛼) sin (𝛽)𝑎𝑧                                                    (2) 

𝑎′𝑦 = cos(𝛼) 𝑎𝑦 − sin(𝛼) 𝑎𝑧              (3) 

𝑎′𝑧 = − sin(𝛽) 𝑎𝑥 + cos(𝛽) sin(𝛼) 𝑎𝑦 + cos(𝛼) cos (𝛽)𝑎𝑧          (4) 

 

 

Figure 12. Reorientation of Acceleration Data to Global Frame of Reference 

 

The next stage of pre-processing requires the road surface condition to be labelled 

in order to obtain the ground truth for our supervised machine learning algorithms. Road 

pavement surface was classified as Potholes, Deep Transverse Cracks or Smooth Road by 

following guidelines and descriptions provided in pavement maintenance manuals from 

the Texas Department of Transportation [7] [31]. Transverse cracks that created a 
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pavement elevation or depression of over 0.5 inches at the position of the crack were 

considered to be Deep Transverse Cracks. 

 

Figure 13. Instances of Road Anomalies: Deep Crack and Pothole 

A custom software application was developed to label the video data that was 

recorded. It enabled the user to perform standard video playback operations such as play, 

pause, fast-forward, rewind and view frame-by-frame. Since our interest lies only in the 

section of the road that the car tires travel over, it also provided a feature to overlay the 

projected tire-trajectory onto the video frames as shown in Figure 14. Instances where the 

car tires partially travel over a road anomaly was labelled as an anomaly if it covered at 

least 60% of the tire width. Finally, the user assigns a label to the road segment by selecting 

a certain frame and specifying the anomaly and the current timestamp displayed. 
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Figure 14. Road Condition Classifier Software with Tire-Trajectory Overlay 

 

 Next, in order to geographically localize the instances of road conditions recorded, 

the recorded GPS data was synced with the vibration data collected using the timestamps. 

The speed of the vehicle was calculated based on the rate of change of GPS coordinates. 

However, due to difference in sampling rate of the Accelerometer/Gyroscope and the GPS 

sensor, the GPS data and the vehicle speed was interpolated using a spline transformation. 

This provided a reasonably accurate estimation of the location and speed at a higher 

sampling rate. Furthermore, to remove certain driving conditions that are not related to the 

quality of road surface such as acceleration, stopping, braking, lane changing, turning etc., 

the acceleration data in the 𝑋′ and 𝑍′ axis was filtered with a Butterworth high-pass filter 

of order 11, cut-off frequency of 3Hz and attenuation of 80dB. The filter removes low 

frequency components related to these events while preserving any high frequency 

changes due to road anomalies as shown in Figure 15. To analyze the information 
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contained in higher frequency bands due to the anomalies, a low pass filter or smoothing 

filter was not applied. 

 

Figure 15. Acceleration signal in X’ and Z’ axis before and after filtering 

 

The continuous filtered data was then converted into segments of data windows of 

length 100 data samples with a 50% overlap of windows. Labeled anomalies and smooth 

road segments were extracted and stored separately for further processing described in the 

feature extraction section. From all data collected, a dataset of 1010 window segments 

was taken into consideration which contained 149 pothole instances, 45 deep crack 

instances and 817 smooth road window segments. 
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2.3 Feature Extraction 

There are different types of features used for the purpose of road vibration analysis. 

We consider three broad categories namely, time domain features, frequency domain 

features and wavelet domain features. 

Previous works in literature only used a few selected features that were considered 

to provide good distinction between road conditions. However, we wanted to 

comprehensively explore various possible features to extract any useful information 

provided by them. Gadelmawla et al. [32] discusses 59 different surface roughness 

parameters. After reviewing various possible parameters mentioned by Gadelmawla et al. 

and previous literature, various time domain measures such as Maximum Value, 

Minimum Value, Mean Value, RMS Value, Peak-to-Peak Value and Ten-Point Average 

Value were calculated from the time domain signal, its peaks, troughs and signal 

envelopes. In the frequency domain, the power spectral density of vibration signals 

provide very useful information that could be used to distinguish different road conditions 

[33] [34]. The power spectral density was calculated for the windowed signals and the 

entire bandwidth was divided into smaller bands of 5Hz each. For each of these bands, 

average band power, RMS band value and maximum band value were considered as 

frequency domain features. In the wavelet domain, Mortlet wavelets and Daubechies 

wavelets were deemed suitable to analyze vibration patterns due to road conditions 

following a review of literature [35][36][37]. Griffiths [36] conducted an extensive study 

to determine suitable mother wavelets by comparing Haar, Mortlet, Mexican Hat and 

Daubechies 6 and 10. She concluded that the Mortlet wavelet as well as Daubechies 6 and 
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10 wavelets could be used to effectively analyze road vehicle vibrations. Upon preliminary 

study, scales 4 and 5 for each of the three wavelets showed the most distinguishable 

characteristics for different road conditions. RMS values and ten-point averages of these 

scales were considered as wavelet domain features. 

In previous literature, as mentioned in the introduction section, acceleration in the 

𝑌′ direction was considered to contain most of the features needed to adequately 

distinguish road anomalies. Accelerations in 𝑋′ and 𝑍′ directions were considered for 

driving events only. However, we believe that more information regarding road anomalies 

are present in the 𝑋′ and 𝑍′ directions. For example, when a car hits a pothole with its left 

front wheel, there is a sudden deceleration in the 𝑍′ direction as well as a sudden tilt in the 

𝑋′ direction. Such information may contribute to distinguishing cracks and potholes, 

considering cracks tend to span the entire width of the road whereas potholes are more 

localized. In total, 54 features were extracted from the accelerometer data for each of the 

three axes. Hence, each feature vector consisted of 162 feature values that were saved as 

a .MAT file. 

 

2.4 Machine Learning Approaches 

Machine Learning is an application of Artificial Intelligence (AI) that provides 

computer systems the ability to learn and improve from experience without explicit 

programming. Once a computer algorithm is trained, the algorithm can apply the 

relationship learnt during training to solve similar problems. For example, the retail 

industry such as Amazon utilize machine learning algorithms to provide highly 
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personalized services. Data collected from prior purchases or searches is used as training 

data to classify online recommendations to specific users. This type of machine learning 

that divides analyzed data into discrete clusters or classes is referred to as the 

“classification problem”. Another kind of machine learning problem, known as 

“regression problem”, finds continuous relationships between data variables instead of 

clustering data into different classes. 

Figure 16 shows the general workflow for both classification and regression type 

of machine learning approaches. It begins with a dataset of raw data whose class labels 

are previously known. For the case of road vehicle vibration, this is the acceleration signals 

recorded by the smartphone which are labelled with different road conditions. This input 

dataset is processed to obtain various attributes of the data called features that are 

compatible with machine learning algorithms. Once the features and class labels are 

extracted, the features list and corresponding class labels are partitioned into three sets, 

the training dataset, validation dataset and testing dataset. All three sets have the same 

distribution of classes in terms of proportion. The training set is used to train the algorithm 

and develop the classifier model. The validation dataset is then used to validate the 

performance of the trained classifier. If there is not enough data to create a validation set, 

there are several other approaches for validation of models such as cross validation where 

the entire data is used for both training and validation. The validation phase is useful to 

compare and correlate the performance of different models and choose the best one that 

fits the problem. To test the model on new data, the testing dataset is used as input to the 

final model to predict output data labels. 
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Figure 16. General Workflow Diagram of Machine Learning Algorithms 

 

Various machine learning classification algorithms have been developed, which 

makes the selection of a classifier a difficult task. Since there are no standardized 

nomenclature in machine learning, similar classification algorithms may be expressed 

with different names. MATLAB® incorporates the Statistics and Machine Learning 

Toolbox, which included implementations of various machine learning classifiers [38]. 

These classifiers can be primarily divided into seven categories- Naive Bayes 

Classification, Discriminant Analysis, Ensembles, Decision Trees, Nearest Neighbors, 

Support Vector Machines (SVM) and Neural Networks [39] [40]. For our study, SVM, 

Decision Trees and Neural Networks were chosen as they are popular and reliable 

techniques used for classification of road vibration data. The complete dataset is 

randomized and divided into training and testing dataset with an 80:20 ratio, keeping the 

proportion of the classes in both datasets constant. To investigate whether the models 

trained with input features extracted from all three axes perform better than using features 
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from 𝑌′ axis only, two datasets containing 162 features and 54 features were created for 

each case respectively. The parameters used to analyze and quantify results are discussed 

in Section 2.5. 

 

2.4.1 Support Vector Machines 

Support Vector Machine is a supervised machine learning model that evaluates 

input data and recognizes patterns for classification and regression analysis. SVM 

performs classification by finding the hyperplane that maximizes the margin between data 

point clusters corresponding to different classes. SVMs are versatile, memory-efficient 

and effective in high-dimensional spaces. Generally, SVM is used to classify data that 

have two distinct labels. The SVM hyperplane is defined by (5), where (𝒙𝑖, 𝑦𝑖) for 𝑖 =

1,2, … 𝑛 are the feature matrix and class vector for the n training data points and (𝒙 ∙ 𝒙′) 

is the matrix feature inner product. The parameters 𝛼�̂� are found by maximizing the 

function given in (6) with the constraint given in (7), where C is a regulation parameter. 

 

𝐷(𝒙) = ∑ �̂�𝑖𝑦𝑖(𝒙 ∙ 𝒙′) + �̂�𝑛
𝑖=1              (5) 

 

𝐿(𝛼) = ∑ 𝛼𝑛
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝒙𝒊 ∙ 𝒙𝒋)𝑛

𝑖,𝑗=1            (6) 

 

∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0                (7) 

 

  𝑤ℎ𝑒𝑟𝑒 0 < 𝛼𝑖 <
𝐶

𝑛
       

 

The parameter �̂� is used to scale the support vector (𝒙𝒔 ∙ 𝑦𝑠) such as only the first class 

exits in 𝐷(𝒙) ≥ 1 and only the second class exits in 𝐷(𝒙) ≤ −1: 
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�̂� = 𝑦𝑠 − ∑ �̂�𝑖𝑦𝑖((𝒙𝒊 ∙ 𝒙𝒔))

𝑛

𝑖=1

= 0  

 

In order to execute multi-class SVM, MATLAB® incorporated the ‘ClassificationECOC’ 

class in their Statistics and Machine Learning Toolbox. ClassificationECOC is an Error 

Correcting Output Code (ECOC) classifier used to perform multiclass learning by 

reducing the classifier to simple binary classifiers such as SVMs. An ECOC model reduces 

a classification problem involving atleast three classes into a set of binary classifiers. If 𝑀 

is the coding design matrix with elements 𝑚𝑘𝑙 and 𝑠𝑙 is the predicted classification score 

for the positive class of learner 𝑙, a new observation is assigned to the class �̂� that 

minimizes the aggregation of losses for the 𝐿 binary learners given by (8) [41]. 

�̂� = argmin
𝑘

∑ |𝑚𝑘𝑙|𝑔(𝑚𝑘𝑙,𝑠𝑙)𝐿
𝑙=1

∑ |𝑚𝑘𝑙|𝐿
𝑙=1

             (8) 

 

For our study, SVM was implemented in two ways- the Simple SVM and Cross 

Validated SVM. The Simple SVM implementation uses the default SVM binary learners 

and one-versus-one coding design to train the SVM model. However, this type of model 

tends to have the problem of over-fitting. In order to try and overcome this problem, a 

subset of data called validation set is used to test the model during the training phase. 

Cross validation techniques such as 5-fold cross-validation, 7-fold cross validation, 10-

fold cross-validation and Leave One Out cross-validation are implemented for our 

analysis. 

2.4.2 Decision Tree 

Decision trees, also known as classification trees and regression trees, predict 

output responses based on input data. Following the decisions in the tree from the root 
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node to the leaf node gives the output response to that particular input data [42]. The 

decision tree is an algorithm that classifies data through a cascade of statistical tests as 

shown in Figure 17. These tests compare the value that is input to a node with a threshold 

value that splits the tree’s path. Tests can have multiple results and different tree paths can 

follow to the same output class label. The complexity of the tree is defined by the number 

of branch splits and depending on its complexity, they have quick training and prediction 

speeds, moderate predictive accuracy and low computational memory requirements. 

 

Figure 17. Decision Tree Structure 

 

The MATLAB® Statistics and Machine Learning Toolbox was used to train a 

binary classification decision tree for multiclass classification. Allouch et al. used a C4.5 

Decision Tree model for pothole detection and concluded that it is an accurate classifier 

[19]. Similar to our approach to SVM, we develop a simple classification decision tree 

and a cross validated tree to reduce over-fitting. 
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2.4.3 Neural Networks 

Neural networks are a popular machine learning framework that attempt to imitate 

the learning pattern of natural biological neural networks in the brain. A typical neural 

network consists of inter-connected arithmetic processors called neurons which produce a 

sequence of real valued activation outputs. Neurons present in the input layer of the neural 

network gets activated through sensor data perceiving the environment, while neurons 

present in other layers get activated through weighted connections from previously active 

neurons. Neural network algorithms link the feature vectors (input layer) to the class labels 

(output layer) using multilayered networks called hidden layers as shown in Figure 18. 

The complexity of the classification problem determines the number of hidden layers 

needed. Although neural networks are powerful, high accuracy algorithms, training them 

requires a large dataset. The size of the required dataset also increases as the number of 

hidden layers increases. 
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Figure 18. Structure of a Neural Network with Two Hidden Layers 

 

A multilayer perceptron (MLP) is a class of feedforward neural networks that 

comprises of at least one hidden layer and uses backpropagation for training its models 

[43] [44]. Each neuron in the hidden layers use a nonlinear activation function which 

distinguishes it from a linear perceptron. Each neuron inputs values from neurons in the 

previous layer and outputs the result of a weighted linear summation followed by a non-

linear activation function. The output layer receives the values from the final hidden layer 

and outputs the class that is predicted for that input data. To realize MLP networks, the 

scikit-learn library for supervised Neural Network was used [45]. The training data and 

the testing data goes through additional pre-processing where the features are standardized 

by removing the mean and scaling to unit variance. This standardization step is a common 
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requirement for various machine learning algorithms including MLPs as they may perform 

poorly if the individual features do not resemble a standard normal distribution. The 

MLPClassifier class available in scikit-learn creates a model that optimizes the log-loss 

function using LBFGS or stochastic gradient descent. It includes various parameters such 

as activation function, hidden layer size, weight optimization solver, regularization factor, 

weight update learning rate, etc. to tune the model to the specific problem [46]. After 

evaluating the performance of the classifier for all permutations of parameters, the MLP 

classifier that provided reliable results with high accuracy consisted of 7 to 10 hidden 

layers, an LBFGS weight optimization solver, a constant learning rate for weight update 

and an activation function of ‘Tanh’ or ‘ReLU’. 

LBFGS is a limited memory optimizer in the family of quasi-Newton methods that 

approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [47] [48]. For 

MLPs, the LBFGS solver can converge faster and performs well when dealing with small 

datasets. Adam, a stochastic gradient-based optimizer proposed by Diederik Kingma and 

Jimmy Ba was also used in comparison [49], however, Adam works best in terms of 

training time and validation scores for larger datasets with thousands of training samples. 

A comparison of activation functions ReLU, Tanh and logistic sigmoid discussed in the 

Results Section showed that ReLU and Tanh perform better. 
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Figure 19. Activation Function Plots for Sigmoid, Tanh and ReLU functions 

 

Since deep neural networks can be used with raw data and performs feature 

extraction implicitly, similar MLP classifiers were designed by providing the raw 

acceleration data as the input instead of the extracted features. As a window size of 100 

data points was considered, each input vector had a length of 100 for the single 𝑌′ axis 

and 300 when all three axes were considered. Providing direct data to a neural network 

eliminates the process of manual feature extraction and hence saves time and memory in 

the training stage. However, such networks require a very large dataset in order to extract 

useful features and may not give high accuracy for the limited dataset we possess. 

Therefore, we not only explore the use of neural network classifiers in classifying feature 

vectors but also classifiers that can classify raw data directly. The results are provided in 

the Results section using the performance evaluation parameters discussed in the next 

section. 
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2.5 Model Evaluation Parameters 

To evaluate the performance of the classifiers described in the previous section, 

various performance evaluation metrics are used for machine learning models. For each 

of the classifiers, we consider relevant and important parameters which best enable us to 

derive a conclusion on its performance. 

A confusion matrix is a specific tabular representation of the performance of a 

supervised machine learning algorithm. Each column represents the number of instances 

of the predicted class while each row represents the number of instances of an actual class. 

Most classification metrics are derived from the confusion matrix based on the number of 

true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). A 

classifier’s accuracy, precision and recall are described in (9), (10) and (11). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
              (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
             (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
             (11) 

To evaluate the performance of the Simple SVM and Simple Decision Tree classifier, the 

average training loss and average test accuracy for the trained classifier are recorded. The 

average training loss is the average in-sample loss of the trained classifier model using the 

training dataset while the average test accuracy is the average classification accuracy using 

the testing dataset for n iterations. The average precision and average recall for the three 

distinct classes predicted by the model are also recorded to analyze what proportion of 

positive identifications were correct and what proportion of actual positives were correctly 
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identified. For cross validated SVM and cross validated Decision Tree, average training 

loss and cross validation error rates for k-fold and leave-p-out cross validations are 

recorded. Graphs of these parameters give an intuitive understanding of their 

reproducibility. 

 Similarly, for the MLP classifier, the average training accuracy and average test 

accuracy is recorded for each of the selected combination of parameters. This provides an 

overview of the classifier’s performance while the Precision and Recall rates for each of 

the three classes provide more specific insights into the classifier’s performance. 
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3. RESULTS 

 

In this section, we analyze and discuss the obtained results and evaluate each of 

the machine learning model’s capability for detecting road anomalies. The parameters 

used to measure and quantify performance are described in the previous section. The 

algorithms were run on an HP ENVY x360 convertible notebook running on Microsoft 

Windows 10 Home OS with an Intel® core™ i5-6200 processor, 2.30GHz CPU and 8GB 

RAM. SVM and Decision tree algorithms were implemented using the Statistics and 

Machine Learning Toolbox on MATLAB® 2017, while Neural Network MLP 

implementation was carried out using Scikit-learn on Python 3.6 environment. 

To analyze the time requirement significance of extracting features using all three 

axes as compared to using only one axis, a comparison of time required to extract the 

features was performed and results tabulated in Table 1. These times correspond to the 

average time taken over 200 trial runs. It can be noted that even though extracting one axis 

features is faster, the feature extraction process for both cases are fast enough to realize 

the entire process in real time. An analysis for time taken to classify the data is discussed 

later in this section. Since sliding windows of 1 second with 50% overlap are used, the 

worst-case time requirement to realize the system in real-time is 500ms. 
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3.1 Support Vector Machines 

The Simple SVM was implemented with one hundred iterations, each using 

distinct combinations of instances for the training and testing datasets while maintaining 

the same proportion of classes. Average values of evaluation parameters for these 

iterations were considered to evaluate the generalized performance of the algorithm. As 

discussed earlier, the SVM was trained separately using features from all three axes as 

well as features from only 𝑌′ axis to conduct a comparative analysis of performance. The 

simple SVM models trained were one-vs-one classifiers with equal misclassification cost 

and a linear kernel function. The training loss, testing accuracy, precision and recall rates 

are tabulated in Table 2. The precision and recall rates are displayed for each of the three 

classes to analyze bias. 

 

TABLE 1 

FEATURE EXTRACTION AVERAGE TIME REQUIREMENTS 

Parameter 
Using Features from all 

Axes (ms) 

Using Features from Y’ 

Axis (ms) 

High Pass Filtering 0.0157 0.0157 

   

Time Domain Feature 

Extraction 
15.257 5.135 

   

Frequency Domain Feature 

Extraction 
1.674 1.084 

   

Wavelet Domain Feature 

Extraction 
52.877 19.01 

Total 69.823 25.245 
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Figure 20. Simple SVM: Training and Testing Error Rates using 162 features from 3 

axes and 54 features from 1 axis 

 

TABLE 2 

SIMPLE SVM IMPLEMENTATION RESULTS 

Parameter Using Features from all Axes 
Using Features from Y’ Axis 

Only 

   

Avg. Training Loss 0.0279 0.0773 

   

Avg. Test 

Accuracy 
0.8855 0.9015 

   

 Crack Pothole Smooth Crack Pothole Smooth 

Avg. Precision 0.4025 0.7221 0.9442 0.3862 0.7479 0.9417 

       

Avg. Recall 0.4375 0.6776 0.9471 0.2100 0.6568 0.9823 
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The cross validated SVM model also implements a one-vs-one classifier with a linear 

kernel function and measures performance using different cross validation methods. The 

results of the cross validation ECOC classifier for SVM is tabulated in Table 3. 

 

From Table 2, it is observed that the classifier trained with features from all three 

axes has lower loss and performs much better than the classifier trained with features from 

𝑌′ axis only. The average training loss is lower and the average testing accuracy is higher 

for the former case. The precision and recall rates for the individual classes are also higher 

when all three axes are used. The recall rate for cracks show the most significant 

improvement, going up by over 20%, while the recall for smooth road reduces by about 

3.5%. The precision and recall rates for potholes remains very comparable. Table 3 shows 

that the cross validated classifier with features from all three axes has a lower training loss 

and lower cross validated errors as well. 

 

 

 

TABLE 3 
CROSS VALIDATED SVM IMPLEMENTATION RESULTS 

Parameter Using Features from all Axes 
Using Features from Y’ Axis 

Only 

   

Avg. Training Loss 0.0149 0.0663 

   

Avg. 5-fold Loss 0.0822 0.0990 

   

Avg. 7-fold Loss 0.0851 0.0990 

   

Avg. 10-fold Loss 0.0842 0.0941 

   

Avg. Leave One Out Loss 0.0812 0.0931 
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3.2 Decision Tree 

The decision trees are implemented in a similar manner to SVM, with five hundred 

iterations of the simple decision tree being implemented with unique sets of training and 

testing data for each iteration. Decision trees are faster to train, however, they create a 

highly varying set of hyperparameters with each iteration such as number of nodes and 

node thresholds. There exists a tradeoff between speed and reproducibility. The training 

loss, testing accuracy, precision and recall rates of the simple decision tree implementation 

are tabulated in Table 4. The results of the cross validated ECOC classifier for Decision 

Tree is tabulated in Table 5. 

 

 

TABLE 4 

SIMPLE DECISION TREE IMPLEMENTATION RESULTS 

Parameter Using Features from all Axes 
Using Features from Y’ Axis 

Only 

   

Avg. Training Loss 0.0199 0.0248 

   

Avg. Test 

Accuracy 
0.8835 0.8734 

   

 Crack Pothole Smooth Crack Pothole Smooth 

Avg. Precision 0.4348 0.6663 0.9497 0.2925 0.6581 0.9442 

       

Avg. Recall 0.4121 0.6716 0.9470 0.3080 0.6462 0.9471 
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Figure 21. Simple Decision Tree: Training and Testing Error Rates using 162 features 

from 3 axes and 54 features using 1 axis 

 

 

From Table 4, it is observed again that the classifiers trained with features from all 

three axes performs better than the classifiers trained with only 𝑌′ axis. Precision and 

TABLE 5 

CROSS VALIDATED DECISION TREE IMPLEMENTATION RESULTS 

Parameter Using Features from all Axes 
Using Features from Y’ Axis 

Only 

   

Avg. Training Loss 0.0188 0.0267 

   

Avg. 5-fold Loss 0.1178 0.1257 

   

Avg. 7-fold Loss 0.1208 0.1109 

   

Avg. 10-fold Loss 0.1010 0.1218 

   

Avg. Leave One Out Loss 0.0970 0.1317 
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Recall for cracks increases by over 10% each and training loss and testing accuracy shows 

slight improvements. However, from Figure 21, it is observed that the test accuracy is not 

very consistent across different iterations. This is expected as each iteration is trained well 

to a particular set of training data and may not perform as well with the testing data. Table 

5 shows that the cross validated classifier with all axes also performs better and shows 

lower training loss and cross validation errors. However, when compared to SVM 

performance, the cross validation errors are higher. 

 

3.3 Neural Networks 

The preliminary analysis stage of implementing an MLP neural network classifier 

involved comparison of test accuracy, precision and recall for the various combinations of 

parameters that were chosen. Twenty iterations of each set of parameters was implemented 

and on inspection of the output performance metrics, the following conclusions were 

made: classifiers that implemented the Adam weight optimization solver gave a slightly 

better overall test accuracy than the LBFGS when used with activation function ReLU and 

comparable accuracy when used with activation function Tanh. However, the individual 

precision and recall rates for Crack and Pothole was much lower for Adam as compared 

to LBFGS. Classifiers that implemented LBFGS converged faster than Adam when the 

number of hidden layers was small but increases as the neural network grows deeper with 

more hidden layers. Comparison of precision and recall rates showed that the Tanh 

activation function gave poor precision and recall for cracks which was compensated in 

overall accuracy by high precision and recall for smooth road. After the analysis, it was 
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concluded that a classifier that implements LBFGS solver and hidden layer size 8 and 9 

gave the most optimal results. However, there was a trade-off existed between ReLU, 

which yielded better precision for cracks and Tanh, which yielded better precision for 

smooth road but gave very poor precision rates for cracks. 

 The final analysis stage compared the performance of the MLP neural networks 

for input feature vector lengths 162 and 54 while implementing ReLU and Tanh with 

LBFGS. In order to account for variability with the number of hidden layers, results were 

compared for these parameters using hidden layer count from 7 to 10. The test accuracy, 

precision and recall for these models are tabulated in Table 6 and Table 7. 

 

TABLE 6 

MLP IMPLEMENTATION USING RELU- RESULTS 

MLP 

Hidden 

Layer 

Count 

Using Features from all Axes Using Features from Y’ Axis Only 

 

TEST ACCURACY 
 

7 0.9212 0.8921 

8 0.9190 0.8919 

9 0.9132 0.8917 

10 0.9031 0.8832 
 

PRECISION RATES 
 

 Crack Pothole Smooth Crack Pothole Smooth 

7 0.559 0.769 0.969 0.350 0.674 0.962 

8 0.550 0.769 0.964 0.345 0.688 0.959 

9 0.481 0.768 0.966 0.377 0.685 0.958 

10 0.418 0.730 0.967 0.323 0.647 0.957 

       
 

RECALL RATES 
 

 Crack Pothole Smooth Crack Pothole Smooth 

7 0.611 0.799 0.962 0.342 0.723 0.953 

8 0.585 0.781 0.963 0.365 0.708 0.952 

9 0.481 0.768 0.966 0.377 0.685 0.958 

10 0.418 0.730 0.967 0.323 0.647 0.957 
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Based on Table 6 and Table 7 it can be observed that the average test accuracy, 

precision and recall rates are higher for the MLP models using features from all three axes 

compared to only a single axis. Considering, models trained using features from only one 

axis, using Tanh as the activation function yields higher precision and recall rates among 

the three classes. However, when considering features from all three axes, ReLU stands 

out in its high precision and recall rates for cracks. The precision and recall rates for 

pothole and smooth remains quite similar between the two activation functions. 

In order to test performance of the MLP Neural Network classifiers in classifying 

road vibration data without manually performing feature extraction prior to training, the 

TABLE 7 

MLP IMPLEMENTATION USING TANH- RESULTS 

MLP 

Hidden 

Layer 

Count 

Using Features from all Axes Using Features from Y’ Axis Only 

 

TEST ACCURACY 
 

7 0.9122 0.8978 

8 0.9149 0.8950 

9 0.9132 0.8952 

10 0.9132 0.8978 
 

PRECISION RATES 
 

 Crack Pothole Smooth Crack Pothole Smooth 

7 0.486 0.757 0.964 0.395 0.705 0.961 

8 0.490 0.754 0.967 0.364 0.708 0.958 

9 0.532 0.731 0.967 0.404 0.695 0.959 

10 0.482 0.763 0.965 0.395 0.712 0.959 

       
 

RECALL RATES 
 

 Crack Pothole Smooth Crack Pothole Smooth 

7 0.498 0.774 0.959 0.409 0.738 0.956 

8 0.529 0.782 0.958 0.416 0.718 0.955 

9 0.490 0.794 0.959 0.417 0.726 0.955 

10 0.510 0.783 0.958 0.408 0.727 0.957 
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acceleration data is directly used as the input to the neural network and is evaluated over 

20 iterations. The single axis input vector has length 100 and input vector with all axes 

has length 300 with data each axes concatenated end to end. An initial analysis regarding 

choice of activation function showed that Tanh activation function failed to produce 

significant precision and recall rates for cracks. Therefore, only ReLU was considered for 

the purpose of analyzing MLP classifiers using direct data. The average test accuracy, 

precision and recall for direct data input using ReLU activation function is tabulated in 

Table 8. 

 

TABLE 8 

MLP USING DIRECT DATA FOR RELU- RESULTS 

MLP 

Hidden 

Layer 

Count 

Using Features from all Axes Using Features from Y’ Axis Only 

 

TEST ACCURACY 
 

7 0.8027 0.8157 

8 0.7946 0.8112 

9 0.8031 0.8140 

10 0.7903 0.7998 
 

PRECISION RATES 
 

 Crack Pothole Smooth Crack Pothole Smooth 

7 0.283 0.329 0.918 0.271 0.423 0.918 

8 0.408 0.301 0.906 0.258 0.469 0.905 

9 0.412 0.346 0.908 0.267 0.420 0.910 

10 0.396 0.351 0.893 0.263 0.451 0.894 

       
 

RECALL RATES 
 

 Crack Pothole Smooth Crack Pothole Smooth 

7 0.139 0.672 0.9118 0.156 0.607 0.911 

8 0.142 0.673 0.9193 0.141 0.621 0.921 

9 0.154 0.711 0.9203 0.149 0.563 0.915 

10 0.135 0.656 0.9266 0.124 0.549 0.924 
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It is observed that the average test accuracy of MLP models using direct data is 

lower compared to MLP models trained using extracted features as input. The average 

precision and recall rates for the case of cracks and potholes are also lower. However, it 

was already anticipated that training neural networks without features would require a 

large dataset and we are limited by the size and composition of our data. 

The main advantage of using Neural Networks without feature extraction is the 

time saved in feature extraction when realizing real time systems. Earlier, we saw that on 

average, the feature extraction requires approximately 70ms and 25ms for the case of 3 

axes and 1 axis respectively. Table 9 shows the average time required to classify a single 

data window using data from all three axes for different trained machine learning 

algorithms discussed in this thesis. Since each of the classifiers take classification times 

in the order of microseconds, using MLP with direct data as the input would save 

computation time for feature extraction. When realizing such a system in real time, this 

saves significant computation time. 

 

  

TABLE 9 

CLASSIFIER PERFORMANCE: TESTING TIME 

Classifier 
Avg. Time to Classify One 

Window (μs) 

SVM 29.372 

  

Decision 

Tree 
4.8032 

  

MLP 36.0142 

  

MLP 

(Direct 

Data) 

72.078 
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4. DISCUSSION AND FUTURE WORK 

  

 Based on the results of the study, we observe that the machine learning approaches 

implemented are quite effective in classifying road anomalies such as cracks and potholes. 

Classifiers trained using features from all axes proved to be more accurate when compared 

to features from only one axis. Since our approach of extracting large number of features 

from all three axes to train multiclass machine learning classifiers was a novel approach, 

our results are independent from those in current literature. 

 There are certain limitations in our current work that can be overcome in future 

works by addressing certain challenges. The relatively small size of our training dataset 

can cause loss of accuracy and precision. The disproportional distribution of instances of 

cracks, potholes and smooth road conditions introduces a bias and may have affected the 

individual precision and recall rates. Since neural networks generally require a very large 

data set to accurately train itself using direct data, results can be improved by addressing 

our shortage of data. For our study, we implemented a fully connected MLP network with 

equal number of neurons in each hidden layer. Exploring different neural network 

architectures could help improve results. A separate study was conducted to analyze the 

influence of different data acquisition conditions such as the type of car, quality of car 

suspension, position of smartphone, use of high sampling rate accelerometers etc. It was 

seen that these factors significantly impact the quality of signal captured and are important 

factors to be considered in future works. We also observed that the machine learning 

algorithms discussed in this thesis can be used to classify road vibration data very quickly 
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after the classifiers have been trained. This encourages the possibility of implementing 

these approaches on a large scale in real time using crowdsensing to collect data. 
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5. CONCLUSION 

 

 Based on the results and discussions presented in this thesis, it can be concluded 

that the use of machine learning techniques to classify road anomalies based on sensor 

data collected from smartphones is a viable and cost effective way of monitoring road 

conditions. Machine learning models trained with features extracted from all three 

coordinate axes give significantly higher accuracy, precision and recall rates as compared 

to models trained with features from only the axis perpendicular to ground. This trend is 

observed in all three machine learning techniques explored in this thesis. It justifies our 

initial hypothesis that useful and relevant information regarding the road condition is 

present in data collected with respect to all three coordinate axes. MLP neural networks 

perform particularly well at classifying potholes, cracks and smooth road when trained 

with features extracted from raw data. The use of neural networks trained using direct 

input data has immense potential in road surface anomaly assessment using sensors. They 

provide scope for scalability and real time system realizations as big data analytics gains 

more importance. With the increase in appeal of smart cars and self-driving cars that 

possess multiple sensors, data collected from them could be used to provide road surface 

assessment to improve safety and infrastructure quality. 
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