3 research outputs found

    Extract interaction detection methods from the biological literature

    Get PDF
    Abstract Background Considerable efforts have been made to extract protein-protein interactions from the biological literature, but little work has been done on the extraction of interaction detection methods. It is crucial to annotate the detection methods in the literature, since different detection methods shed different degrees of reliability on the reported interactions. However, the diversity of method mentions in the literature makes the automatic extraction quite challenging. Results In this article, we develop a generative topic model, the Correlated Method-Word model (CMW model) to extract the detection methods from the literature. In the CMW model, we formulate the correlation between the different methods and related words in a probabilistic framework in order to infer the potential methods from the given document. By applying the model on a corpus of 5319 full text documents annotated by the MINT and IntAct databases, we observe promising results, which outperform the best result reported in the BioCreative II challenge evaluation. Conclusion From the promising experiment results, we can see that the CMW model overcomes the issues caused by the diversity in the method mentions and properly captures the in-depth correlations between the detection methods and related words. The performance outperforming the baseline methods confirms that the dependence assumptions of the model are reasonable and the model is competent for the practical processing.</p

    Semantic annotation of biological concepts interplaying microbial cellular responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Automated extraction systems have become a time saving necessity in Systems Biology. Considerable human effort is needed to model, analyse and simulate biological networks. Thus, one of the challenges posed to Biomedical Text Mining tools is that of learning to recognise a wide variety of biological concepts with different functional roles to assist in these processes.</p> <p>Results</p> <p>Here, we present a novel corpus concerning the integrated cellular responses to nutrient starvation in the model-organism <it>Escherichia coli</it>. Our corpus is a unique resource in that it annotates biomedical concepts that play a functional role in expression, regulation and metabolism. Namely, it includes annotations for genetic information carriers (genes and DNA, RNA molecules), proteins (transcription factors, enzymes and transporters), small metabolites, physiological states and laboratory techniques. The corpus consists of 130 full-text papers with a total of 59043 annotations for 3649 different biomedical concepts; the two dominant classes are <it>genes </it>(highest number of unique concepts) and <it>compounds </it>(most frequently annotated concepts), whereas other important cellular concepts such as <it>proteins </it>account for no more than 10% of the annotated concepts.</p> <p>Conclusions</p> <p>To the best of our knowledge, a corpus that details such a wide range of biological concepts has never been presented to the text mining community. The inter-annotator agreement statistics provide evidence of the importance of a consolidated background when dealing with such complex descriptions, the ambiguities naturally arising from the terminology and their impact for modelling purposes.</p> <p>Availability is granted for the full-text corpora of 130 freely accessible documents, the annotation scheme and the annotation guidelines. Also, we include a corpus of 340 abstracts.</p

    The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text

    Get PDF
    BACKGROUND: Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them.RESULTS:A total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthew's Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89 and the best AUC iP/R was 68. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35) the macro-averaged precision ranged between 50 and 80, with a maximum F-Score of 55. CONCLUSIONS: The results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows
    corecore