1,037 research outputs found

    Distributional Measures of Semantic Distance: A Survey

    Full text link
    The ability to mimic human notions of semantic distance has widespread applications. Some measures rely only on raw text (distributional measures) and some rely on knowledge sources such as WordNet. Although extensive studies have been performed to compare WordNet-based measures with human judgment, the use of distributional measures as proxies to estimate semantic distance has received little attention. Even though they have traditionally performed poorly when compared to WordNet-based measures, they lay claim to certain uniquely attractive features, such as their applicability in resource-poor languages and their ability to mimic both semantic similarity and semantic relatedness. Therefore, this paper presents a detailed study of distributional measures. Particular attention is paid to flesh out the strengths and limitations of both WordNet-based and distributional measures, and how distributional measures of distance can be brought more in line with human notions of semantic distance. We conclude with a brief discussion of recent work on hybrid measures

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Linguistic Structure in Statistical Machine Translation

    Get PDF
    This thesis investigates the influence of linguistic structure in statistical machine translation. We develop a word reordering model based on syntactic parse trees and address the issues of pronouns and morphological agreement with a source discriminative word lexicon predicting the translation for individual words using structural features. When used in phrase-based machine translation, the models improve the translation for language pairs with different word order and morphological variation

    Delving into the uncharted territories of Word Sense Disambiguation

    Get PDF
    The automatic disambiguation of word senses, i.e. Word Sense Disambiguation, is a long-standing task in the field of Natural Language Processing; an AI-complete problem that took its first steps more than half a century ago, and which, to date, has apparently attained human-like performances on standard evaluation benchmarks. Unfortunately, the steady evolution that the task experienced over time in terms of sheer performance has not been followed hand in hand by adequate theoretical support, nor by careful error analysis. Furthermore, we believe that the lack of an exhaustive bird’s eye view which accounts for the sort of high-end and unrealistic computational architectures that systems will soon need in order to further refine their performances could lead the field to a dead angle in a few years. In essence, taking advantage of the current moment of great accomplishments and renewed interest in the task, we argue that Word Sense Disambiguation is mature enough for researchers to really observe the extent of the results hitherto obtained, evaluate what is actually missing, and answer the much sought for question: “are current state-of-the-art systems really able to effectively solve lexical ambiguity?” Driven by the desire to become both architects and participants in this period of pondering, we have identified a few macro-areas representatives of the challenges of automatic disambiguation. From this point of view, in this thesis, we propose experimental solutions and empirical tools so as to bring to the attention of the Word Sense Disambiguation community unusual and unexplored points of view. We hope these will represent a new perspective through which to best observe the current state of disambiguation, as well as to foresee future paths for the task to evolve on. Specifically, 1q) prompted by the growing concern about the rise in performance being closely linked to the demand for more and more unrealistic computational architectures in all areas of application of Deep Learning related techniques, we 1a) provide evidence for the undisclosed potential of approaches based on knowledge-bases, via the exploitation of syntagmatic information. Moreover, 2q) driven by the dissatisfaction with the use of cognitively-inaccurate, finite inventories of word senses in Word Sense Disambiguation, we 2a) introduce an approach based on Definition Modeling paradigms to generate contextual definitions for target words and phrases, hence going beyond the limits set by specific lexical-semantic inventories. Finally, 3q) moved by the desire to analyze the real implications beyond the idea of “machines performing disambiguation on par with their human counterparts” we 3a) put forward a detailed analysis of the shared errors affecting current state-of-the-art systems based on diverse approaches for Word Sense Disambiguation, and highlight, by means of a novel evaluation dataset tailored to represent common and critical issues shared by all systems, performances way lower than those usually reported in the current literature

    The Acquisition Of Lexical Knowledge From The Web For Aspects Of Semantic Interpretation

    Get PDF
    This work investigates the effective acquisition of lexical knowledge from the Web to perform semantic interpretation. The Web provides an unprecedented amount of natural language from which to gain knowledge useful for semantic interpretation. The knowledge acquired is described as common sense knowledge, information one uses in his or her daily life to understand language and perception. Novel approaches are presented for both the acquisition of this knowledge and use of the knowledge in semantic interpretation algorithms. The goal is to increase accuracy over other automatic semantic interpretation systems, and in turn enable stronger real world applications such as machine translation, advanced Web search, sentiment analysis, and question answering. The major contributions of this dissertation consist of two methods of acquiring lexical knowledge from the Web, namely a database of common sense knowledge and Web selectors. The first method is a framework for acquiring a database of concept relationships. To acquire this knowledge, relationships between nouns are found on the Web and analyzed over WordNet using information-theory, producing information about concepts rather than ambiguous words. For the second contribution, words called Web selectors are retrieved which take the place of an instance of a target word in its local context. The selectors serve for the system to learn the types of concepts that the sense of a target word should be similar. Web selectors are acquired dynamically as part of a semantic interpretation algorithm, while the relationships in the database are useful to iii stand-alone programs. A final contribution of this dissertation concerns a novel semantic similarity measure and an evaluation of similarity and relatedness measures on tasks of concept similarity. Such tasks are useful when applying acquired knowledge to semantic interpretation. Applications to word sense disambiguation, an aspect of semantic interpretation, are used to evaluate the contributions. Disambiguation systems which utilize semantically annotated training data are considered supervised. The algorithms of this dissertation are considered minimallysupervised; they do not require training data created by humans, though they may use humancreated data sources. In the case of evaluating a database of common sense knowledge, integrating the knowledge into an existing minimally-supervised disambiguation system significantly improved results – a 20.5% error reduction. Similarly, the Web selectors disambiguation system, which acquires knowledge directly as part of the algorithm, achieved results comparable with top minimally-supervised systems, an F-score of 80.2% on a standard noun disambiguation task. This work enables the study of many subsequent related tasks for improving semantic interpretation and its application to real-world technologies. Other aspects of semantic interpretation, such as semantic role labeling could utilize the same methods presented here for word sense disambiguation. As the Web continues to grow, the capabilities of the systems in this dissertation are expected to increase. Although the Web selectors system achieves great results, a study in this dissertation shows likely improvements from acquiring more data. Furthermore, the methods for acquiring a database of common sense knowledge could be applied in a more exhaustive fashion for other types of common sense knowledge. Finally, perhaps the greatest benefits from this work will come from the enabling of real world technologies that utilize semantic interpretation

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    Automatic Concept Extraction in Semantic Summarization Process

    Get PDF
    The Semantic Web offers a generic infrastructure for interchange, integration and creative reuse of structured data, which can help to cross some of the boundaries that Web 2.0 is facing. Currently, Web 2.0 offers poor query possibilities apart from searching by keywords or tags. There has been a great deal of interest in the development of semantic-based systems to facilitate knowledge representation and extraction and content integration [1], [2]. Semantic-based approach to retrieving relevant material can be useful to address issues like trying to determine the type or the quality of the information suggested from a personalized environment. In this context, standard keyword search has a very limited effectiveness. For example, it cannot filter for the type of information, the level of information or the quality of information. Potentially, one of the biggest application areas of content-based exploration might be personalized searching framework (e.g., [3],[4]). Whereas search engines provide nowadays largely anonymous information, new framework might highlight or recommend web pages related to key concepts. We can consider semantic information representation as an important step towards a wide efficient manipulation and retrieval of information [5], [6], [7]. In the digital library community a flat list of attribute/value pairs is often assumed to be available. In the Semantic Web community, annotations are often assumed to be an instance of an ontology. Through the ontologies the system will express key entities and relationships describing resources in a formal machine-processable representation. An ontology-based knowledge representation could be used for content analysis and object recognition, for reasoning processes and for enabling user-friendly and intelligent multimedia content search and retrieval. Text summarization has been an interesting and active research area since the 60’s. The definition and assumption are that a small portion or several keywords of the original long document can represent the whole informatively and/or indicatively. Reading or processing this shorter version of the document would save time and other resources [8]. This property is especially true and urgently needed at present due to the vast availability of information. Concept-based approach to represent dynamic and unstructured information can be useful to address issues like trying to determine the key concepts and to summarize the information exchanged within a personalized environment. In this context, a concept is represented with a Wikipedia article. With millions of articles and thousands of contributors, this online repository of knowledge is the largest and fastest growing encyclopedia in existence. The problem described above can then be divided into three steps: • Mapping of a series of terms with the most appropriate Wikipedia article (disambiguation). • Assigning a score for each item identified on the basis of its importance in the given context. • Extraction of n items with the highest score. Text summarization can be applied to many fields: from information retrieval to text mining processes and text display. Also in personalized searching framework text summarization could be very useful. The chapter is organized as follows: the next Section introduces personalized searching framework as one of the possible application areas of automatic concept extraction systems. Section three describes the summarization process, providing details on system architecture, used methodology and tools. Section four provides an overview about document summarization approaches that have been recently developed. Section five summarizes a number of real-world applications which might benefit from WSD. Section six introduces Wikipedia and WordNet as used in our project. Section seven describes the logical structure of the project, describing software components and databases. Finally, Section eight provides some consideration..

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc
    • …
    corecore