249,047 research outputs found

    Learning to Play Games in Extensive Form by Valuation

    Full text link
    A valuation for a player in a game in extensive form is an assignment of numeric values to the players moves. The valuation reflects the desirability moves. We assume a myopic player, who chooses a move with the highest valuation. Valuations can also be revised, and hopefully improved, after each play of the game. Here, a very simple valuation revision is considered, in which the moves made in a play are assigned the payoff obtained in the play. We show that by adopting such a learning process a player who has a winning strategy in a win-lose game can almost surely guarantee a win in a repeated game. When a player has more than two payoffs, a more elaborate learning procedure is required. We consider one that associates with each move the average payoff in the rounds in which this move was made. When all players adopt this learning procedure, with some perturbations, then, with probability 1, strategies that are close to subgame perfect equilibrium are played after some time. A single player who adopts this procedure can guarantee only her individually rational payoff

    Large Scale Learning of Agent Rationality in Two-Player Zero-Sum Games

    Full text link
    With the recent advances in solving large, zero-sum extensive form games, there is a growing interest in the inverse problem of inferring underlying game parameters given only access to agent actions. Although a recent work provides a powerful differentiable end-to-end learning frameworks which embed a game solver within a deep-learning framework, allowing unknown game parameters to be learned via backpropagation, this framework faces significant limitations when applied to boundedly rational human agents and large scale problems, leading to poor practicality. In this paper, we address these limitations and propose a framework that is applicable for more practical settings. First, seeking to learn the rationality of human agents in complex two-player zero-sum games, we draw upon well-known ideas in decision theory to obtain a concise and interpretable agent behavior model, and derive solvers and gradients for end-to-end learning. Second, to scale up to large, real-world scenarios, we propose an efficient first-order primal-dual method which exploits the structure of extensive-form games, yielding significantly faster computation for both game solving and gradient computation. When tested on randomly generated games, we report speedups of orders of magnitude over previous approaches. We also demonstrate the effectiveness of our model on both real-world one-player settings and synthetic data

    A New Game Equivalence and its Modal Logic

    Get PDF
    We revisit the crucial issue of natural game equivalences, and semantics of game logics based on these. We present reasons for investigating finer concepts of game equivalence than equality of standard powers, though staying short of modal bisimulation. Concretely, we propose a more finegrained notion of equality of "basic powers" which record what players can force plus what they leave to others to do, a crucial feature of interaction. This notion is closer to game-theoretic strategic form, as we explain in detail, while remaining amenable to logical analysis. We determine the properties of basic powers via a new representation theorem, find a matching "instantial neighborhood game logic", and show how our analysis can be extended to a new game algebra and dynamic game logic.Comment: In Proceedings TARK 2017, arXiv:1707.0825
    • …
    corecore