1,128 research outputs found

    Tight Lower Bounds on the Sizes of Symmetric Extensions of Permutahedra and Similar Results

    Full text link
    It is well known that the permutahedron Pi_n has 2^n-2 facets. The Birkhoff polytope provides a symmetric extended formulation of Pi_n of size Theta(n^2). Recently, Goemans described a non-symmetric extended formulation of Pi_n of size Theta(n log(n)). In this paper, we prove that Omega(n^2) is a lower bound for the size of symmetric extended formulations of Pi_n.Comment: corrected an error in the linear description of the permutahedron in introductio

    Symmetry Matters for Sizes of Extended Formulations

    Full text link
    In 1991, Yannakakis (J. Comput. System Sci., 1991) proved that no symmetric extended formulation for the matching polytope of the complete graph K_n with n nodes has a number of variables and constraints that is bounded subexponentially in n. Here, symmetric means that the formulation remains invariant under all permutations of the nodes of K_n. It was also conjectured in the paper mentioned above that "asymmetry does not help much," but no corresponding result for general extended formulations has been found so far. In this paper we show that for the polytopes associated with the matchings in K_n with log(n) (rounded down) edges there are non-symmetric extended formulations of polynomial size, while nevertheless no symmetric extended formulations of polynomial size exist. We furthermore prove similar statements for the polytopes associated with cycles of length log(n) (rounded down). Thus, with respect to the question for smallest possible extended formulations, in general symmetry requirements may matter a lot. Compared to the extended abtract that has appeared in the Proceedings of IPCO XIV at Lausanne, this paper does not only contain proofs that had been ommitted there, but it also presents slightly generalized and sharpened lower bounds.Comment: 24 pages; incorporated referees' comments; to appear in: SIAM Journal on Discrete Mathematic

    An extension of disjunctive programming and its impact for compact tree formulations

    Full text link
    In the 1970's, Balas introduced the concept of disjunctive programming, which is optimization over unions of polyhedra. One main result of his theory is that, given linear descriptions for each of the polyhedra to be taken in the union, one can easily derive an extended formulation of the convex hull of the union of these polyhedra. In this paper, we give a generalization of this result by extending the polyhedral structure of the variables coupling the polyhedra taken in the union. Using this generalized concept, we derive polynomial size linear programming formulations (compact formulations) for a well-known spanning tree approximation of Steiner trees, for Gomory-Hu trees, and, as a consequence, of the minimum TT-cut problem (but not for the associated TT-cut polyhedron). Recently, Kaibel and Loos (2010) introduced a more involved framework called {\em polyhedral branching systems} to derive extended formulations. The most parts of our model can be expressed in terms of their framework. The value of our model can be seen in the fact that it completes their framework by an interesting algorithmic aspect.Comment: 17 page

    Optimization Modulo Theories with Linear Rational Costs

    Full text link
    In the contexts of automated reasoning (AR) and formal verification (FV), important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, little work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any previous work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In the work described in this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of linear rational cost functions, combining SMT with standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver. Due to the absence of competitors in the AR, FV and SMT domains, we have experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.Comment: Submitted on january 2014 to ACM Transactions on Computational Logic, currently under revision. arXiv admin note: text overlap with arXiv:1202.140

    Robustness of controllers designed using Galerkin type approximations

    Get PDF
    One of the difficulties in designing controllers for infinite-dimensional systems arises from attempting to calculate a state for the system. It is shown that Galerkin type approximations can be used to design controllers which will perform as designed when implemented on the original infinite-dimensional system. No assumptions, other than those typically employed in numerical analysis, are made on the approximating scheme
    corecore