54,410 research outputs found

    A Physicsl Model of Electron According to the Basic Structures of Matter Hypothesis

    Get PDF
    A physical model of the electron is suggested according to the basic structures of matter (BSM) hypothesis. BSM is based on an alternative concept about the physical vacuum, assuming that space contains an underlying grid structure of nodes formed of superdense subelementary particles, which are also involved in the structure of the elementary particles. The proposed grid structure is formed of vibrating nodes that possess quantum features and energy well. It is admitted that this hypothetical structure could account for the missing “dark matter” in the universe. The signature of this dark matter is apparent in the galactic rotational curves and in the relation between masses of the supermassive black hole in the galactic center and the host galaxy. The suggested model of the electron possesses oscillation features with anomalous magnetic moment and embedded signatures of the Compton wavelength and the fine-structure constant. The analysis of the interactions between the oscillating electron and the nodes of the vacuum grid structure allows us to obtain physical meaning for some fundamental constants

    The modal logic of arithmetic potentialism and the universal algorithm

    Full text link
    I investigate the modal commitments of various conceptions of the philosophy of arithmetic potentialism. Specifically, I consider the natural potentialist systems arising from the models of arithmetic under their natural extension concepts, such as end-extensions, arbitrary extensions, conservative extensions and more. In these potentialist systems, I show, the propositional modal assertions that are valid with respect to all arithmetic assertions with parameters are exactly the assertions of S4. With respect to sentences, however, the validities of a model lie between S4 and S5, and these bounds are sharp in that there are models realizing both endpoints. For a model of arithmetic to validate S5 is precisely to fulfill the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal Σ1\Sigma_1 theory. The main S4 analysis makes fundamental use of the universal algorithm, of which this article provides a simplified, self-contained account. The paper concludes with a discussion of how the philosophical differences of several fundamentally different potentialist attitudes---linear inevitability, convergent potentialism and radical branching possibility---are expressed by their corresponding potentialist modal validities.Comment: 38 pages. Inquiries and commentary can be made at http://jdh.hamkins.org/arithmetic-potentialism-and-the-universal-algorithm. Version v3 has further minor revisions, including additional reference

    Nonlinear extensions of the Dirac equation and their implications in QED

    Get PDF
    We investigate the influence of additional nonlinear terms in the Dirac Lagrangian on strongly bound electron states in heavy and superheavy atoms. Upper bounds for the coupling constants are deduced by comparison with precision spectroscopy data in QED. We demonstrate that nonlinear interactions may cause significant modifications of electron binding energies in superheavy quasiatomic systems which would not be visible in ordinary atomic-physics measurements

    PHOTOS Interface in C++; Technical and Physics Documentation

    Full text link
    For five years now, PHOTOS Monte Carlo for bremsstrahlung in the decay of particles and resonances has been available with an interface to the C++ HepMC event record. The main purpose of the present paper is to document the technical aspects of the PHOTOS Monte Carlo installation and present version use. A multitude of test results and examples are distributed together with the program code. The PHOTOS C++ physics precision is better than its FORTRAN predecessor and more convenient steering options are also available. An algorithm for the event record interface necessary for process dependent photon emission kernel is implemented. It is used in Z and W decays for kernels of complete first order matrix elements of the decays. Additional emission of final state lepton pairs is also available. Physics assumptions used in the program and properties of the solution are reviewed. In particular, it is explained how the second order matrix elements were used in design and validation of the program iteration procedure. Also, it is explained that the phase space parametrization used in the program is exact.Comment: Updated version; for the program as of April 201

    Metaphoric coherence: Distinguishing verbal metaphor from `anomaly\u27

    Get PDF
    Theories and computational models of metaphor comprehension generally circumvent the question of metaphor versus “anomaly” in favor of a treatment of metaphor versus literal language. Making the distinction between metaphoric and “anomalous” expressions is subject to wide variation in judgment, yet humans agree that some potentially metaphoric expressions are much more comprehensible than others. In the context of a program which interprets simple isolated sentences that are potential instances of cross‐modal and other verbal metaphor, I consider some possible coherence criteria which must be satisfied for an expression to be “conceivable” metaphorically. Metaphoric constraints on object nominals are represented as abstracted or extended along with the invariant structural components of the verb meaning in a metaphor. This approach distinguishes what is preserved in metaphoric extension from that which is “violated”, thus referring to both “similarity” and “dissimilarity” views of metaphor. The role and potential limits of represented abstracted properties and constraints is discussed as they relate to the recognition of incoherent semantic combinations and the rejection or adjustment of metaphoric interpretations

    The Five Instructions

    Full text link
    Five elementary lectures delivered at TASI 2011 on the Standard Model, its extensions to neutrino masses, flavor symmetries, and Grand-Unification
    corecore