203 research outputs found

    On word-representability of polyomino triangulations

    Get PDF
    A graph G=(V,E)G=(V,E) is word-representable if there exists a word ww over the alphabet VV such that letters xx and yy alternate in ww if and only if (x,y)(x,y) is an edge in EE. Some graphs are word-representable, others are not. It is known that a graph is word-representable if and only if it accepts a so-called semi-transitive orientation. The main result of this paper is showing that a triangulation of any convex polyomino is word-representable if and only if it is 3-colorable. We demonstrate that this statement is not true for an arbitrary polyomino. We also show that the graph obtained by replacing each 44-cycle in a polyomino by the complete graph K4K_4 is word-representable. We employ semi-transitive orientations to obtain our results

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for s≤⌈d/2⌉s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for ⌈d/2⌉<s≤d\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    Precoloring extension in planar near-Eulerian-triangulations

    Get PDF
    We consider the 4-precoloring extension problem in planar near-Eulerian- triangulations, i.e., plane graphs where all faces except possibly for the outer one have length three, all vertices not incident with the outer face have even degree, and exactly the vertices incident with the outer face are precolored. We give a necessary topological condition for the precoloring to extend, and give a complete characterization when the outer face has length at most five and when all vertices of the outer face have odd degree and are colored using only three colors

    3-colorability of pseudo-triangulations

    Get PDF
    Electronic version of an article published as International Journal of Computational Geometry & Applications, Vol. 25, No. 4 (2015) 283–298 DOI: 10.1142/S0218195915500168 © 2015 World Scientific Publishing Company. http://www.worldscientific.com/worldscinet/ijcgaDeciding 3-colorability for general plane graphs is known to be an NP-complete problem. However, for certain families of graphs, like triangulations, polynomial time algorithms exist. We consider the family of pseudo-triangulations, which are a generalization of triangulations, and prove NP-completeness for this class. This result also holds if we bound their face degree to four, or exclusively consider pointed pseudo-triangulations with maximum face degree five. In contrast to these completeness results, we show that pointed pseudo-triangulations with maximum face degree four are always 3-colorable. An according 3-coloring can be found in linear time. Some complexity results relating to the rank of pseudo-triangulations are also given.Postprint (author's final draft

    The Cost of Perfection for Matchings in Graphs

    Full text link
    Perfect matchings and maximum weight matchings are two fundamental combinatorial structures. We consider the ratio between the maximum weight of a perfect matching and the maximum weight of a general matching. Motivated by the computer graphics application in triangle meshes, where we seek to convert a triangulation into a quadrangulation by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs. First, we characterize graphs that attain the extreme ratios. Second, we present a lower bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight bounds for the class of regular bipartite graphs
    • …
    corecore