31 research outputs found

    An HMM--ELLAM scheme on generic polygonal meshes for miscible incompressible flows in porous media

    Full text link
    We design a numerical approximation of a system of partial differential equations modelling the miscible displacement of a fluid by another in a porous medium. The advective part of the system is discretised using a characteristic method, and the diffusive parts by a finite volume method. The scheme is applicable on generic (possibly non-conforming) meshes as encountered in applications. The main features of our work are the reconstruction of a Darcy velocity, from the discrete pressure fluxes, that enjoys a local consistency property, an analysis of implementation issues faced when tracking, via the characteristic method, distorted cells, and a new treatment of cells near the injection well that accounts better for the conservativity of the injected fluid

    Piecewise linear transformation in diffusive flux discretization

    Full text link
    To ensure the discrete maximum principle or solution positivity in finite volume schemes, diffusive flux is sometimes discretized as a conical combination of finite differences. Such a combination may be impossible to construct along material discontinuities using only cell concentration values. This is often resolved by introducing auxiliary node, edge, or face concentration values that are explicitly interpolated from the surrounding cell concentrations. We propose to discretize the diffusive flux after applying a local piecewise linear coordinate transformation that effectively removes the discontinuities. The resulting scheme does not need any auxiliary concentrations and is therefore remarkably simpler, while being second-order accurate under the assumption that the structure of the domain is locally layered.Comment: 11 pages, 1 figures, preprint submitted to Journal of Computational Physic

    A high-order cell-centered finite volume scheme for simulating three dimensional anisotropic diffusion equations on unstructured grids

    Get PDF
    We present a finite volume based cell-centered method for solving diffusion equations on three-dimensional unstructured grids with general tensor conduction. Our main motivation concerns the numerical simulation of the coupling between fluid flows and heat transfers. The corresponding numerical scheme is characterized by cell-centered unknowns and a local stencil. Namely, the scheme results in a global sparse diffusion matrix, which couples only the cell-centered unknowns. The space discretization relies on the partition of polyhedral cells into sub-cells and on the partition of cell faces into sub-faces. It is characterized by the introduction of sub-face normal fluxes and sub-face temperatures, which are auxiliary unknowns. A sub-cell-based variational formulation of the constitutive Fourier law allows to construct an explicit approximation of the sub-face normal heat fluxes in terms of the cell-centered temperature and the adjacent sub-face temperatures. The elimination of the sub-face temperatures with respect to the cell-centered temperatures is achieved locally at each node by solving a small and sparse linear system. This system is obtained by enforcing the continuity condition of the normal heat flux accross each sub-cell interface impinging at the node under consideration. The parallel implementation of the numerical algorithm and its efficiency are described and analyzed. The accuracy and the robustness of the proposed finite volume method are assessed by means of various numerical test cases

    A Nominally Second-Order Cell-Centered Finite Volume Scheme for Simulating Three-Dimensional Anisotropic Diffusion Equations on Unstructured Grids

    Get PDF
    We present a finite volume based cell-centered method for solving diffusion equations on three-dimensional unstructured grids with general tensor conduction. Our main motivation concerns the numerical simulation of the coupling between fluid flows and heat transfers. The corresponding numerical scheme is characterized by cell-centered unknowns and a local stencil. Namely, the scheme results in a global sparse diffusion matrix, which couples only the cell-centered unknowns. The space discretization relies on the partition of polyhedral cells into sub-cells and on the partition of cell faces into sub-faces. It is characterized by the introduction of sub-face normal fluxes and sub-face temperatures, which are auxiliary unknowns. A sub-cellbased variational formulation of the constitutive Fourier law allows to construct an explicit approximation of the sub-face normal heat fluxes in terms of the cell-centered temperature and the adjacent sub-face temperatures. The elimination of the sub-face temperatures with respect to the cell-centered temperatures is achieved locally at each node by solving a small and sparse linear system. This systemis obtained by enforcing the continuity condition of the normal heat flux across each sub-cell interface impinging at the node under consideration. The parallel implementation of the numerical algorithm and its efficiency are described and analyzed. The accuracy and the robustness of the proposed finite volumemethod are assessed bymeans of various numerical test case

    A nominally second-order cell-centered finite volume scheme for simulating three-dimensional anisotropic diffusion equations on unstructured grids

    Full text link
    We present a finite volume based cell-centered method for solving diffusion equations on three-dimensional unstructured grids with general tensor conduction. Our main motivation concerns the numerical simulation of the coupling between fluid flows and heat transfers. The corresponding numerical scheme is characterized by cell-centered unknowns and a local stencil. Namely, the scheme results in a global sparse diffusion matrix, which couples only the cell-centered unknowns. The space discretization relies on the partition of polyhedral cells into sub-cells and on the partition of cell faces into sub-faces. It is characterized by the introduction of sub-face normal fluxes and sub-face temperatures, which are auxiliary unknowns. A sub-cellbased variational formulation of the constitutive Fourier law allows to construct an explicit approximation of the sub-face normal heat fluxes in terms of the cell-centered temperature and the adjacent sub-face temperatures. The elimination of the sub-face temperatures with respect to the cell-centered temperatures is achieved locally at each node by solving a small and sparse linear system. This systemis obtained by enforcing the continuity condition of the normal heat flux across each sub-cell interface impinging at the node under consideration. The parallel implementation of the numerical algorithm and its efficiency are described and analyzed. The accuracy and the robustness of the proposed finite volumemethod are assessed bymeans of various numerical test cases

    Raviart-Thomas finite elements of Petrov-Galerkin type

    Full text link
    The mixed finite element method for the Poisson problem with the Raviart-Thomas elements of low-level can be interpreted as a finite volume method with a non-local gradient. In this contribution, we propose a variant of Petrov-Galerkin type for this problem to ensure a local computation of the gradient at the interfaces of the elements. The shape functions are the Raviart-Thomas finite elements. Our goal is to define test functions that are in duality with these shape functions: Precisely, the shape and test functions will be asked to satisfy a L2-orthogonality property. The general theory of Babu\v{s}ka brings necessary and sufficient stability conditions for a Petrov-Galerkin mixed problem to be convergent. We propose specific constraints for the dual test functions in order to ensure stability. With this choice, we prove that the mixed Petrov-Galerkin scheme is identical to the four point finite volumes scheme of Herbin, and to the mass lumping approach developed by Baranger, Maitre and Oudin. Finally, we construct a family of dual test functions that satisfy the stability conditions. Convergence is proven with the usual techniques of mixed finite elements

    Optimal-complexity and robust multigrid methods for high-order FEM

    Get PDF
    The numerical solution of elliptic PDEs is often the most computationally intensive task in large-scale continuum mechanics simulations. High-order finite element methods can efficiently exploit modern parallel hardware while offering very rapid convergence properties. As the polynomial degree is increased, the efficient solution of such PDEs becomes difficult. This thesis develops preconditioners for high-order discretizations. We build upon the pioneering work of Pavarino, who proved in 1993 that the additive Schwarz method with vertex patches and a low-order coarse space gives a solver for symmetric and coercive problems that is robust to the polynomial degree. However, for very high polynomial degrees it is not feasible to assemble or factorize the matrices for each vertex patch, as the patch matrices contain dense blocks, which couple together all degrees of freedom within a cell. The central novelty of the preconditioners we develop is that they have optimal time and space complexity on unstructured meshes of tensor-product cells. Our solver relies on new finite elements for the de Rham complex that enable the blocks in the stiffness matrix corresponding to the cell interiors to become diagonal for scalar PDEs or block diagonal for vector-valued PDEs. With these new elements, the patch problems are as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. In the non-separable case, the method can be applied as a preconditioner by approximating the problem with a separable surrogate. Through the careful use of incomplete factorizations and choice of space decomposition we achieve optimal fill-in in the patch factors, ultimately allowing for optimal-complexity storage and computational cost across the setup and solution stages. We demonstrate the approach by solving a variety of symmetric and coercive problems, including the Poisson equation, the Riesz maps of H(curl) and H(div), and a H(div)-conforming interior penalty discretization of linear elasticity in three dimensions at p = 15

    Vertex-based Compatible Discrete Operator schemes on polyhedral meshes for advection-diffusion equations

    Get PDF
    International audienceWe devise and analyze vertex-based, Péclet-robust, lowest-order schemes for advection-diffusion equations that support polyhedral meshes. The schemes are formulated using Compatible Discrete Operators (CDO), namely primal and dual discrete differential operators, a discrete contraction operator for advection, and a discrete Hodge operator for diffusion. Moreover, discrete boundary operators are devised to weakly enforce Dirichlet boundary conditions. The analysis sheds new light on the theory of Friedrichs' operators at the purely algebraic level. Moreover, an extension of the stability analysis hinging on inf-sup conditions is presented to incorporate divergence-free velocity fields under some assumptions. Error bounds and convergence rates for smooth solutions are derived, and numerical results are presented on three-dimensional polyhedral meshes

    Higher-Order DGFEM Transport Calculations on Polytope Meshes for Massively-Parallel Architectures

    Get PDF
    In this dissertation, we develop improvements to the discrete ordinates (S_N) neutron transport equation using a Discontinuous Galerkin Finite Element Method (DGFEM) spatial discretization on arbitrary polytope (polygonal and polyhedral) grids compatible for massively-parallel computer architectures. Polytope meshes are attractive for multiple reasons, including their use in other physics communities and their ease in handling local mesh refinement strategies. In this work, we focus on two topical areas of research. First, we discuss higher-order basis functions compatible to solve the DGFEM S_N transport equation on arbitrary polygonal meshes. Second, we assess Diffusion Synthetic Acceleration (DSA) schemes compatible with polytope grids for massively-parallel transport problems. We first utilize basis functions compatible with arbitrary polygonal grids for the DGFEM transport equation. We analyze four different basis functions that have linear completeness on polygons: the Wachspress rational functions, the PWL functions, the mean value coordinates, and the maximum entropy coordinates. We then describe the procedure to extend these polygonal linear basis functions into the quadratic serendipity space of functions. These quadratic basis functions can exactly interpolate monomial functions up to order 2. Both the linear and quadratic sets of basis functions preserve transport solutions in the thick diffusion limit. Maximum convergence rates of 2 and 3 are observed for regular transport solutions for the linear and quadratic basis functions, respectively. For problems that are limited by the regularity of the transport solution, convergence rates of 3/2 (when the solution is continuous) and 1/2 (when the solution is discontinuous) are observed. Spatial Adaptive Mesh Refinement (AMR) achieved superior convergence rates than uniform refinement, even for problems bounded by the solution regularity. We demonstrated accuracy in the AMR solutions by allowing them to reach a level where the ray effects of the angular discretization are realized. Next, we analyzed DSA schemes to accelerate both the within-group iterations as well as the thermal upscattering iterations for multigroup transport problems. Accelerating the thermal upscattering iterations is important for materials (e.g., graphite) with significant thermal energy scattering and minimal absorption. All of the acceleration schemes analyzed use a DGFEM discretization of the diffusion equation that is compatible with arbitrary polytope meshes: the Modified Interior Penalty Method (MIP). MIP uses the same DGFEM discretization as the transport equation. The MIP form is Symmetric Positive De_nite (SPD) and e_ciently solved with Preconditioned Conjugate Gradient (PCG) with Algebraic MultiGrid (AMG) preconditioning. The analysis from previous work was extended to show MIP's stability and robustness for accelerating 3D transport problems. MIP DSA preconditioning was implemented in the Parallel Deterministic Transport (PDT) code at Texas A&M University and linked with the HYPRE suite of linear solvers. Good scalability was numerically verified out to around 131K processors. The fraction of time spent performing DSA operations was small for problems with sufficient work performed in the transport sweep (O(10^3) angular directions). Finally, we have developed a novel methodology to accelerate transport problems dominated by thermal neutron upscattering. Compared to historical upscatter acceleration methods, our method is parallelizable and amenable to massively parallel transport calculations. Speedup factors of about 3-4 were observed with our new method

    Application of a Higher Order Discontinuous Galerkin

    Get PDF
    We discuss the issues of implementation of a higher order discontinuous Galerkin (DG) scheme for aerodynamics computations. In recent years a DG method has intensively been studied at Central Aerohydrodynamic Institute (TsAGI) where a computational code has been designed for numerical solution of the 3-D Euler and Navier-Stokes equations. Our discussion is mainly based on the results of the DG study conducted in TsAGI in collaboration with the NUMECA International. The capacity of a DG scheme to tackle challenging computational problems is demonstrated and its potential advantages over FV schemes widely used in modern computational aerodynamics are highlighted
    corecore