514 research outputs found

    Compact gml: merging mobile computing and mobile cartography

    Get PDF
    The use of portable devices is moving from "Wireless Applications", typically implemented as browsing-on-the-road, to "Mobile Computing", which aims to exploit increasing processing power of consumer devices. As users get connected with smartphones and PDAs, they look for geographic information and location-aware services. While browser-based approaches have been explored (using static images or graphics formats such as Mobile SVG), a data model tailored for local computation on mobile devices is still missing. This paper presents the Compact Geographic Markup Language (cGML) that enables design and development of specific purpose GIS applications for portable consumer devices where a cGML document can be used as a spatial query result as well

    Feeds as Query Result Serializations

    Full text link
    Many Web-based data sources and services are available as feeds, a model that provides consumers with a loosely coupled way of interacting with providers. The current feed model is limited in its capabilities, however. Though it is simple to implement and scales well, it cannot be transferred to a wider range of application scenarios. This paper conceptualizes feeds as a way to serialize query results, describes the current hardcoded query semantics of such a perspective, and surveys the ways in which extensions of this hardcoded model have been proposed or implemented. Our generalized view of feeds as query result serializations has implications for the applicability of feeds as a generic Web service for any collection that is providing access to individual information items. As one interesting and compelling class of applications, we describe a simple way in which a query-based approach to feeds can be used to support location-based services

    Developing Android Mobile Map Application with standard navigation tools for pedestrians

    Get PDF
    Advanced features of modern mobile devices have made it possible to develop and use maps and map based applications for navigation purposes. Since most mobile map applications nowadays are developed for motor vehicles, there is a demand for portable pedestrian navigation applications. In this thesis the Android mobile map application with standard navigation tools for pedestrian navigation was developed, as a platform for facilitating the Lund Challenge location based demonstrator of the HaptiMap project. The pivotal aim of the Lund Challenge demonstrator is to make the sights of Lund city more accessible. The mobile phone application is being designed as a touristic, historical location based game which will also assist tourists to navigate themselves in the city. To enable exploration of historical and current sites of Lund the demonstrator should contain basic components of exploring and way finding. Prior to the development the OpenStreetMap (OSM) road network data and Swedish National Road Database (NVDB) were introduced. The main advantage of using the OSM data over the NVDB dataset is the completeness of the OSM data in terms of pedestrian paths. The datasets were imported to PostgreSQL spatially extended PostGIS database, where different routing algorithms provided by pgRouting were used for routing calculations. As the Lund Challenge demonstrator is intended not only for general users but also for visually impaired users, the problem of user navigation in the parks and open areas were also discussed and the feasibility study was performed. The limitation of the developed application was the problem of the user navigation in the parks and open areas. It is therefore necessary to upgrade the road database with possible path in the open areas and parks in order to implement this application.Advanced features of modern devices have made it possible to develop and use maps and map-based applications for navigation purposes. Since most mobile map applications are currently developed for motor vehicles, there is a demand for portable pedestrian navigation applications. In this thesis, a mobile map application was developed with standard navigation tools for pedestrians, which can be used with mobile phones running Android Operating System. The application will be used as a platform for facilitating the Lund Challenge location based demonstrator. Lund Challenge location based demonstrator is designed to make historical and actual maps of Lund more accessible and is a part of the HaptiMap project. This project aims to create maps and develop location-based services for all users, including elderly and visually impaired. The goal of the Lund Challenge location based demonstrator (also known as The Lund Time Machine) is to minimize the efforts of pedestrians, especially tourists, with finding interesting sites around the city. Initially, it is being designed as a historical location based game which will assist tourists to navigate themselves around the city. In order to further explore historical and current sites, the Lund Challenge should be enhanced with the basic features of exploration and navigation included in this thesis. The road network data was chosen from two available sources: 1) data from OpenStreetMap (OSM) project which provides free geographic data, and 2) The Swedish National Road Database (NVDB) authorized by the Swedish government, which includes all Swedish road network and selected cycle paths. For this thesis, analysis was performed on the datasets using different shortest path algorithms for routing calculations. A primary advantage of using OSM over NVDB is the completeness of data relating to pedestrian paths. As a result, the determination was made that the OSM option was more appropriate for the purpose of this thesis. Since the Lund Challenge location based demonstrator is intended for both general and visually impaired users, the problem of user navigation in parks and open areas was also discussed and a feasibility study was performed. This study revealed a limitation in the application with user navigation in parks and open areas. To resolve this, it is necessary to upgrade the road network with all possible pedestrian paths for parks and open areas

    Multi-Paradigm Reasoning for Access to Heterogeneous GIS

    Get PDF
    Accessing and querying geographical data in a uniform way has become easier in recent years. Emerging standards like WFS turn the web into a geospatial web services enabled place. Mediation architectures like VirGIS overcome syntactical and semantical heterogeneity between several distributed sources. On mobile devices, however, this kind of solution is not suitable, due to limitations, mostly regarding bandwidth, computation power, and available storage space. The aim of this paper is to present a solution for providing powerful reasoning mechanisms accessible from mobile applications and involving data from several heterogeneous sources. By adapting contents to time and location, mobile web information systems can not only increase the value and suitability of the service itself, but can substantially reduce the amount of data delivered to users. Because many problems pertain to infrastructures and transportation in general and to way finding in particular, one cornerstone of the architecture is higher level reasoning on graph networks with the Multi-Paradigm Location Language MPLL. A mediation architecture is used as a “graph provider” in order to transfer the load of computation to the best suited component – graph construction and transformation for example being heavy on resources. Reasoning in general can be conducted either near the “source” or near the end user, depending on the specific use case. The concepts underlying the proposal described in this paper are illustrated by a typical and concrete scenario for web applications

    Integrated XML andGML in Geographical Information System

    Get PDF
    This project basically concentrated on the study of extensible Markup Language (XML) and Geography Markup Language (GML) in Geographical Information System (GIS). The objective of the project is to convert the spatial data (e.g.: coordinates, area, etc) by using the XML and GML and then coding will be integrated and viewed in the web browser by using the Scalable Vector Graphic (SVG)technology. Basically, this project is done to find a new way to overcomethe weaknesses of map digitizing and taking advantage of the GML technology in Geographical Information System. The project scope is concentrate on the usage of XML andGML in GIS. Research is done onXML technologies, which are provided for GML. The technologies included technology for encoding and data modeling (Data Type Definition, XML Schema), technology for transforming (XSLT) and technology for graphic rendering (SVG). Research on GML is focused on manipulation of spatial data to convert to simple features such as point, line and polygon. This project combines XML, GML and SVG technologies in order to meet the project objectives. In completing this project, waterfall model is use as the methodology for the system development. The project is developed according tothe four phases of system development, which are planning, analysis, design and implementation. The discussion ofthis project will be more on GML compatibility and the advantages of using SVG to view the map. The simple display of map created will be able to show thatGML is suits for handling geo-spatial data overthe Internet. The user would be able to view the map and zooming feature is provided by SVG

    Handling Data Consistency through Spatial Data Integrity Rules in Constraint Decision Tables

    Get PDF
    • …
    corecore