285 research outputs found

    Comparing different sampling schemes for approximating the integrals involved in the semi-Bayesian optimal design of choice experiments.

    Get PDF
    In conjoint choice experiments, the semi-Bayesian D-optimality criterion is often used to compute efficient designs. The traditional way to compute this criterion which involves multi-dimensional integrals over the prior distribution is to use Pseudo-Monte Carlo samples. However, other sampling approaches are available. Examples are the Quasi-Monte Carlo approach (randomized Halton sequences, modified Latin hypercube sampling and extensible shifted lattice points with Baker's transformation), the Gaussian-Hermite quadrature approach and a method using spherical-radial transformations. Not much is known in general about which sampling scheme performs best in constructing efficient choice designs. In this study, we compare the performance of these approaches under various scenarios. We try to identify the most efficient sampling scheme for each situation.Conjoint choice design; Pseudo-Monte Carlo; Quasi-Monte Carlo; Gaussian-Hermite quadrature; Spherical-radial transformation;

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    Recent advances in higher order quasi-Monte Carlo methods

    Full text link
    In this article we review some of recent results on higher order quasi-Monte Carlo (HoQMC) methods. After a seminal work by Dick (2007, 2008) who originally introduced the concept of HoQMC, there have been significant theoretical progresses on HoQMC in terms of discrepancy as well as multivariate numerical integration. Moreover, several successful and promising applications of HoQMC to partial differential equations with random coefficients and Bayesian estimation/inversion problems have been reported recently. In this article we start with standard quasi-Monte Carlo methods based on digital nets and sequences in the sense of Niederreiter, and then move onto their higher order version due to Dick. The Walsh analysis of smooth functions plays a crucial role in developing the theory of HoQMC, and the aim of this article is to provide a unified picture on how the Walsh analysis enables recent developments of HoQMC both for discrepancy and numerical integration

    Multilevel Quasi-Monte Carlo Methods for Lognormal Diffusion Problems

    Get PDF
    In this paper we present a rigorous cost and error analysis of a multilevel estimator based on randomly shifted Quasi-Monte Carlo (QMC) lattice rules for lognormal diffusion problems. These problems are motivated by uncertainty quantification problems in subsurface flow. We extend the convergence analysis in [Graham et al., Numer. Math. 2014] to multilevel Quasi-Monte Carlo finite element discretizations and give a constructive proof of the dimension-independent convergence of the QMC rules. More precisely, we provide suitable parameters for the construction of such rules that yield the required variance reduction for the multilevel scheme to achieve an ε\varepsilon-error with a cost of O(ε−θ)\mathcal{O}(\varepsilon^{-\theta}) with θ<2\theta < 2, and in practice even θ≈1\theta \approx 1, for sufficiently fast decaying covariance kernels of the underlying Gaussian random field inputs. This confirms that the computational gains due to the application of multilevel sampling methods and the gains due to the application of QMC methods, both demonstrated in earlier works for the same model problem, are complementary. A series of numerical experiments confirms these gains. The results show that in practice the multilevel QMC method consistently outperforms both the multilevel MC method and the single-level variants even for non-smooth problems.Comment: 32 page
    • …
    corecore