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Comparing di�erent sampling schemes for approximating
the integrals involved in the semi-Bayesian optimal design

of choice experiments

Abstract

In conjoint choice experiments, the semi-Bayesian D-optimality criterion is often used
to compute e�cient designs. The traditional way to compute this criterion which involves
multi-dimensional integrals over the prior distribution is to use Pseudo-Monte Carlo sam-
ples. However, other sampling approaches are available. Examples are the Quasi-Monte
Carlo approach (randomized Halton sequences, modi�ed Latin hypercube sampling and ex-
tensible shifted lattice points with Baker's transformation), the Gaussian-Hermite quadrature
approach and a method using spherical-radial transformations. Not much is known in general
about which sampling scheme performs best in constructing e�cient choice designs. In this
study, we compare the performance of these approaches under various scenarios. We try to
identify the most e�cient sampling scheme for each situation.

Keywords: conjoint choice design, Pseudo-Monte Carlo, Quasi-Monte Carlo, Gaussian-
Hermite quadrature, spherical-radial transformation

1 Introduction

Conjoint choice experiments have become popular for assessing consumers' preferences about the
characteristics of products or services in �elds like marketing, econometrics and transportation.
A popular econometrics model for analyzing the data from such kinds of experiments is the logit
model (McFadden 1974, 1978; Ben-Akiva and Lerman 1985; Brownstone and Train 1999). It has
been shown that constructing an e�cient choice design for such a model is crucial for improving
the statistical inference about the quantities of interests (e.g. Huber and Zwerina 1996; Sándor
and Wedel 2001; Vermeulen et al. 2008, Yu et al. 2008a, 2008c).
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To construct an e�cient choice design, one has to deal with the fact that probabilistic choice
models are nonlinear in the parameters. This implies that researchers need to assume values for
the parameters before constructing the designs (Atkinson and Donev 1992; Atkinson and Haines
1996; Sándor and Wedel 2001; Dror and Steinberg 2006). In recent years the semi-Bayesian
approach, introduced in the marketing literature by Sándor and Wedel (2001), has been used
widely for choice experiments (Bliemer et al. 2008; Kessels et al. 2006, 2008; Vermeulen et al.
2008; Yu et al. 2008a, 2008b, 2008c). This approach considers a range of possible values of the
parameters by assuming a prior distribution for them in the design construction. Sándor and
Wedel (2001) showed the bene�ts of this approach compared to the locally optimal approach and
concluded that taking into account the prior uncertainty in the design stage leads to designs that
are highly e�cient even if the prior information is not well speci�ed.

The traditional way to compute the semi-Bayesian design criterion which involves a multi-dimensional
integral over the prior distribution, is to use Pseudo Monte Carlo (PMC ) samples. These samples
are chosen randomly from the prior distribution. This method is easy to implement but is very
likely to lead to a large variability in the result when the number of random draws is small. The
reason is that the PMC draws are chosen independently of each other and the scattering might
be large in some areas of the integration domain while very small in other areas. As a result,
di�erent sets of random PMC draws are likely to produce di�erent coverages of the distribution
space (Bliemer et al. 2008).

To circumvent the lack of stability of the PMC approach, researchers often use a large sample of
draws to approximate the design criterion which is very time consuming. Sándor and Wedel (2001),
Kessels et al. (2006), Vermeulen et al. (2008) and Yu et al. (2008a) all used 1000 PMC draws
for constructing semi-Bayesian designs for conditional logit models. However, the large sample of
PMC draws makes the application of semi-Bayesian design criteria for constructing realistic choice
experimental designs computationally demanding as there might be millions of integrals that need
to be evaluated when searching for the best design.

In recent years, some researchers started to use systematic draws instead of random draws to
compute the integrals. Samples from the uniform distribution are obtained using deterministic
numbers rather than computer-generated pseudo-random numbers. These deterministic numbers
are called Quasi-Monte Carlo (QMC) samples. Quasi-random samples are more evenly scattered
throughout the domain where the integral is calculated, and therefore improve the accuracy of
the approximation of integrals. For this reason, they have received a lot of attention for solving
di�erent problems in the literature. Hickernell et al. (2000) have proposed extensible shifted lattice
points (ESLP ) and used them for computing multivariate normal probabilities and evaluating
multi-dimensional integrals arising in physics. Sándor and András (2004) have compared several
QMC methods for estimating multivariate normal probabilities in econometrics and concluded
that the ESLP with Baker's transformation performs best. Other work, which employs QMC for
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computing the integrals arising in econometric models, was done by Hess et al. (2006) who have
applied the modi�ed Latin hypercube sampling (MLHS) to estimate a mixed logit model, Bhat
(2001, 2003) and Train (2000, 2003) who employed Halton sequences and a randomized version of
them when estimating probabilities for logit models with random coe�cients. Sándor and Train
(2004) applied (t,m, s)-nets and Halton draws for an application of maximum simulated likelihood
estimation of a mixed logit model.

Also in the context of experimental designs, the use of systematic draws has been studied by many
authors. Sándor and Wedel (2002, 2005) utilized samples based on orthogonal arrays and shifted
good lattice points for constructing locally mixed logit designs, respectively. Recently Kessels
et al. (2008) constructed semi-Bayesian conditional logit designs using a small set of systematic
draws based on the theory of minimum potential energy. Their approach was extended by Yu et
al. (2008b) for semi-Bayesian mixed logit designs. Gotwalt et al. (2008) modi�ed the approach
of Monahan and Genz (1997) to compute a semi-Bayesian design criterion. The integral related
to the multivariate normal prior distribution was reparameterized and decomposed into a radial
integral and an integral over the surface of the unit hypersphere. They showed that the proposed
sampling approach is quite e�cient in approximating a semi-Bayesian design criterion. Bliemer et
al. (2008) compared PMC samples, some QMC samples and samples obtained using a Gaussian-
Hermite quadrature approach. They showed the superiority of the Gaussian-Hermite quadrature
method in the context of experimental choice designs. The relative performance of the Gaussian-
Hermite quadrature approach compared to other recently developed approaches like ESLP with
Baker's transformation and the approach proposed by Gotwalt et al. (2008) in evaluating the
semi-Bayesian design criterion for choice models has not been studied yet and will be investigated
in this paper.

With small samples of intelligent draws, many problems which remained unsolved for a long time
can be tackled now. A typical example is the construction of optimal experimental designs for
nonlinear models using the true Bayesian design criteria where the expected posterior covariance
matrix is considered. All authors mentioned before studied semi-Bayesian design criteria based
on the Fisher information matrix (FIM). The underlying idea is that the inverse of the FIM is
an asymptotic approximation to the posterior covariance matrix of the parameter estimates when
the sample size is large. With the traditional PMC approach where a large number of draws
is required, �nding the semi-Bayesian design based on the FIM is feasible but computationally
demanding. It is however impossible to construct optimal designs based on the covariance matrix
of the posterior distribution using the PMC approach. Using the results of this paper, however,
Yu et al. (2008c) were able to construct Bayesian designs for conditional logit models based on
the expected posterior covariance matrix.

The literature shows that the ESLP with Baker's transformation, the Gaussian-Hermite quadra-
ture and the approach proposed by Gotwalt et al. (2008) are the most promising sampling ap-
proaches. Each of them has emerged as the best sampling approach in some studies. However,
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these three approaches have not been compared with each other. In this paper, we study the rel-
ative performance of these three sampling approaches in generating e�cient experimental choice
designs. In addition, we also include three other well-known sampling approaches (MLHS, ran-
domized Halton sequences and PMC) in the comparison.

2 Sampling Methodologies

In this section, we present six sampling approaches for approximating multi-dimensional integrals.
These include PMC samples, QMC samples (randomized Halton sequences, MLHS and ESLP with
Baker's transformation), the Gaussian-Hermite quadrature, and the method based on a spherical-
radial transformation.

Suppose that β follows a multivariate normal distribution, β ∼ N(µ,Σ). The expectation of a
function g(β) with respect to the distribution of β, π(β), is expressed as

E [g(β)] =

ˆ

<p

g(β)π(β)dβ,

=

ˆ

<p

g(β)(2π)−
p
2 | Σ |− 1

2 e−
1
2
(β−µ)T Σ−1(β−µ)dβ.

(1)

To take draws from a multivariate normal distribution, one often transforms the multivariate
normal distribution into univariate standard normal distributions. The transformation is based
on a Cholesky decomposition of the covariance matrix Σ =DD′. This leads to β = µ+Dz, where
the vector z has elements drawn from independent standard normal distributions. As

(β − µ)′Σ−1(β − µ) = z′D′(D′)−1D−1Dz = z′z, (2)

and

dβ =| D | dz =| Σ | 12 dz, (3)

equation (1) becomes
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E [g(β)] =

ˆ ∞

−∞
· · ·

ˆ ∞

−∞
g(µ + Dz)(2π)−

p
2

p∏

k=1

e−
z2
k
2 dz1 · · · dzp,

=

ˆ ∞

−∞
· · ·

ˆ ∞

−∞
g(µ + Dz)

p∏

k=1

φ(zk)dz1 · · · dzp,

(4)

where φ(zk) = (2π)−
1
2 e−

z2
k
2 is the density function of a univariate standard normal distribution.

To approximate the integral in (4), N draws are taken from the corresponding distribution φ(zk)

for each of the p parameters. Let Φ(zk) be the standard cumulative distribution function. The
rth draw for the kth parameter, zr

k, is then computed as zr
k = Φ−1(xr

k), where xr
k, r = 1, ..., N is a

set of points randomly taken from a uniform distribution on the interval [0, 1). For p dimensions,
the draws are taken from the uniform distribution on [0, 1)p and (4) is approximated by

E [g(β)] =
1

N

N∑
r=1

g
(
µ + DΦ−1(xr)

)
(5)

where Φ−1(xr) = [Φ−1(xr
1), ..., Φ

−1(xr
p)], the draws (xr)N

r=1 can be obtained either by a PMC
method or by a QMC method. In the PMC method, (xr

k), k = 1, ..., p, are obtained using
computer-generated pseudo-random numbers. In QMC method, (xr

k), k = 1, ..., p, are obtained
using number-theoretic methods (e.g., Halton 1960; Korobov 1959). These are explained in detail
in the next section.

2.1 Quasi-Monte Carlo Sequences

This section begins with one of the best known QMC sequences, namely the randomized Halton se-
quence and then introduces the MLHS approach. Finally, the ESLP with Baker's transformation
is presented.

2.1.1 Randomized Halton Sequences

Halton sequences, proposed by Halton (1960), are designed to span the domain of the p-dimensional
unit cube uniformly and e�ciently. They are constructed using a deterministic method based on
prime numbers. A di�erent prime base is used for each dimension. For example, for the �rst
dimension, the prime number 2 is used, while for the second dimension, the prime number 3 is
utilized.
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In one dimension, the ith element in the Halton sequence based on prime b is generated by �rst
expanding i in terms of the base b:

i =
m∑

k=0

ikb
k = i0b

0 + i1b + i2b
2 + ..., (6)

where the digits ik are in {0, ..., b− 1}, and m is determined by bm ≤ i < bm+1. For instance,
if base b = 2, i = 4, 2m ≤ 4 < 2m+1 gives us m = 2. Integer i = 4 is then expressed as
4 = 0× 20 + 0× 21 + 1× 22.

The ith element of the one dimensional Halton sequence based on prime b is then obtained as

φb(i) =
m∑

k=0

ikb
−(k+1) = i0b

−1 + i1b
−2 + ... (7)

Equation (7) produces the uniformly distributed Halton sequence which is uniformly distributed
in [0, 1). For instance, if N = 7 points need to be computed using base 2, the �rst element is
determined by φ2(1) = 1×2−1 = 1

2
, the second element is determined by φ2(2) = 0×2−1+1×2−2 =

1
4
, and the rest of the points can be computed similarly: φ2(3) = 3

4
, φ2(4) = 1

8
, φ2(5) = 5

8
,

φ2(6) = 3
8
, φ2(7) = 7

8
.

The p-dimensional Halton sequence is obtained by pairing p one-dimensional sequences based on
p consecutive prime integers, b1, b2, ..., bp. Suppose xi is a p-dimensional Halton draw constructed
by using the �rst p prime numbers b1, b2, ..., bp , as bases. The ith point, xi, in the sequence can
then be written as

xi =
(
φb1(i), φb2(i), ..., φbp(i)

)
, i = 1, 2, .... (8)

Halton sequences are systematic rather than random, but they can be transformed in a way that
makes them random. The transformation process utilized by Bhat (2003) and Train (2003) was
based on the two-step procedure introduced by Tu�n (1996). First, for the kth one-dimensional
sequence (k = 1, ..., p), a random draw uk is taken from a standard uniform distribution in space
[0, 1), and added to each element of the sequence. If the resulting element exceeds one, then 1
unity is subjected from it. The randomized p-dimensional Halton sequence can then be written as

xi =
({φb1(i) + u1} , ...,

{
φbp(i) + up

})
, i = 1, 2, ..., (9)
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where the symbol {x} denotes the fractional part of the number x. By adding the same random
number uk to each element in dimension k, the relation between the points in dimension k and
the degree of coverage is not changed.

2.1.2 Modi�ed Latin Hypercube Sampling

The MLHS proposed by Hess et al. (2006) constructs multi-dimensional sequences by combining
randomly shu�ed one-dimensional sequences. The ith point, xi, in the p-dimensional MLHS
sequence can be written as:

xi =

(
i− 1

N
+ u1, ...,

i− 1

N
+ up

)
, i = 1, ..., N (10)

where uk, k = 1, ..., p, is a random number drawn from (0, 1
N

) with N the number of points in
the one-dimensional sequence. For example, suppose that N = 5, and that the random number
uk for the kth dimension is 0.07, the resulting sequence for the kth dimension is 0.07, 0.27, 0.47,
0.67, 0.87. It is clear that the distances between adjacent draws are all equal to 1/N = 0.2,
satisfying the condition of equal spacing. Finally, the sequence in each dimension obtained in (10)
is reordered using a random shu�ing permutation. The use of a di�erent shu�ing for di�erent
dimensions disrupts the cyclical nature of the sequences in di�erent ways.

2.1.3 Extensible Shifted Lattice Points

The rank-1 lattice points introduced by Korobov (1959) are another type of low discrepancy set
used in QMC methods. However, it has the limitation of being of �xed size. More speci�cally,
the construction of the rank-1 lattice points depends on the total number of points, N0, in the
set. This implies that adding any extra draw destroys the lattice structure. To construct N −N0

extra lattice points, one has to discard all original N0 points. Therefore, Hickernell et al. (2000)
proposed to construct the in�nite shifted lattice points, also called extensible shifted lattice points,
which have the attractive property that the number of draws can be increased while retaining the
existing points.

According to Hickernell et al. (2000), an in�nite rank-1 lattice sequence in base b ≥ 2 with
generating vector q = [q1, ..., qp] and shift u = [u1, ..., up] is de�ned as

xi = ({φb(i)q1 + u1} , ..., {φb(i)qp + up}) , i = 0, 1, 2, ...bm − 1 (11)
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where φb(i) is given in equation (7) and bm is the total number of points. The vector q is com-
puted by minimizing some loss function based on a measure of discrepancy or nonuniformity
of the lattice (Hickernell et al. 2000). We consider the Korobov type of lattice points where
q = (1, q, q2, ..., qp−1) with q = 1571 which is recommended by Hickernell et al. (2000) for samples
of size 2m with m = 6, ..., 12 and dimensions up to 33. The p-dimensional shift, with ui a random
number in [0, 1), is meant to randomize the lattice points.

To increase the accuracy of the lattice rule methods, Hickernell et al. (2000) and Sándor and
András (2004) utilized the so-called Baker's transformation. All elements in the sequence are
transformed by x′ik = 1− | 2xik − 1 |, i = 0, ..., bm − 1, k = 1, ..., p, where xik = {φb(i)qk + uk}.
The vector x′i = (x′i1, ..., x′ip) is called extensible shifted lattice point with Baker's transformation.

2.2 Gaussian-Hermite Quadrature

As shown previously, the PMC and QMC methods all take an unweighted average of the function
values when computing the expectation of g(β), but di�er in the way they take draws from
the uniform distribution. Similar to the QMC methods where systematic draws are used, the
Gaussian-Hermite quadrature method constructs systematic draws as well. However, rather than
assigning the same weight to all draws as with the PMC and QMC methods, the Gaussian-
Hermite quadrature method gives a speci�c weight to each draw and computes a weighted sum of
the function values.

Prior to explaining how this method works for computing the expectation of g(β) over a multi-
variate normal distribution, we explain how to calculate the integral over the standard normal
distribution using the Gaussian-Hermite quadrature approach. In the standard Gaussian-Hermite
quadrature, the integrand and its approximation are as follows

I [f(x)] =

ˆ ∞

−∞
f(x)e−x2

dx ≈
N∑

i=1

wN
i f(aN

i ), (12)

where the factor e−x2 is regarded as a weighting function, wN
i and aN

i are called standard weights
and abscissas and can be computed using Hermite polynomials. If the weighting function is given
by a standard normal density, 1√

2π
e−

t2

2 , the corresponding integration is

I [f(t)] =

ˆ ∞

−∞
f(t)

1√
2π

e−
t2

2 dt. (13)
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Let t =
√

2x. Equation (13) then becomes

I [f(t)] =
1√
π

ˆ ∞

−∞
f(
√

2x)e−x2

dx ≈
N∑

i=1

w̃N
i f(ãN

i ), (14)

where ãN
i and w̃N

i are the corresponding modi�ed abscissas and weights. Comparing (14) to (12),
we notice that the modi�ed abscissas and weights can be obtained from the standard abscissas
and weights. That is, ãN

i =
√

2aN
i and w̃N

i = wN
i /
√

π. Table 1 contains the modi�ed abscissas
and weights for N up to 6.

*Table 1*

For the problem that we consider in this paper (computing the expectation of g(β) over a mul-
tivariate normal distribution), we �rst follow the procedures given in (1), (2), (3) and (4) to
transform the multivariate normal distribution into p univariate standard normal distributions.
The Nk draws for the kth standard normal distribution (k = 1, ..., p) are given by the modi�ed
abscissas, ãNk

ik
, and the corresponding weights are the modi�ed weight, w̃Nk

ik
, i = 1, ..., Nk. The

weights sum to one in each dimension k. The number of draws in each dimension, Nk can be
unequal. The p-dimensional integral of g(β) in (4) is then approximated by

E [g(β)] ≈
N1∑

i1=1

...

Np∑
ip=1

[
w̃N1

i1
...w̃

Np

ip
g(µ + Dã(i1,i2,...,ip))

]
, (15)

where ã(i1,i2,...,ip) = (ãN1
i1

, ãN2
i2

, ..., ã
Np

ip
) is a p-dimensional vector which contains a combination of the

abscissas from each of the p dimensions. The total number of draws is equal to the total number
of all combinations of abscissas in all dimensions, that is N =

∏p
k=1 Nk. Obviously, the value of

N grows dramatically as the dimension increases. Therefore, the Gaussian-Hermite quadrature is
not suited for practical use in high dimensions.

2.3 Method Based on Spherical-Radial Transformation

The last sampling approach that we consider is based on the spherical-radial transformation (SR)
proposed by Gotwalt et al. (2008). The Gaussian-Hermite quadrature method and the SR ap-
proach both take a weighted sum of the integrand values, but di�er in the way they select the
draws and the corresponding weights. Rather than working in the original coordinate system, the
SR approach transforms the original system to a radial-spherical coordinate system. The original
integration is then transformed into a radial integration and an integration over the surface of the
unit sphere. Using the formulas (1), (2) and (3), the expectation of g(β) can be expressed as
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E [g(β)] = (2π)−
p
2

ˆ

<p

g(µ + Dz)e−
1
2
zT zdz. (16)

The standard normal vector z can then be changed to a radial-spherical coordinate system. Let
z = rs, with sT s = 1, so that zTz = r2. The integral in (16) can be decomposed over the
(p− 1)-dimensional unit hypersphere Sp−1 in <p. Expression (16) then becomes

E [g(β)] = (2π)−
p
2

ˆ ∞

0

ˆ

Sp−1

g(µ + Drs) r(p−1)e−
r2

2 ds dr. (17)

Let r =
√

2x, equation (17) is then written as

E [g(β)] =
π−

p
2

2

ˆ ∞

0

ˆ

Sp−1

g(µ + D
√

2xs) x( p
2
−1)e−xds dx. (18)

The outer integral (the radial integral) is approximated with a generalized Gauss-Laguerre quadra-
ture with an abscissa at zero added. Cassity and Hopper (1964) summarized the abscissas, ai and
weights, wRi

, i = 0, ..., NR for use in the following generalized Gauss-Laguerre quadrature formula

ˆ ∞

0

f(x)xse−xdx = wR0f(0) +

NR∑
i=1

wRi
f(ai). (19)

Notice that (19) has similar pattern as (18), where f(x) =
´

Sp−1 g(µ + D
√

2x s)ds, s = p
2
− 1.

Based on (19), the outer integral in expression (18) can be approximated as follows

E [g(β)] ≈ π−
p
2

2

[
wR0

ˆ

Sp−1

g(µ)ds +

NR∑
i=1

wRi

ˆ

Sp−1

g(µ + Dris)ds

]
, (20)

where ri, i = 1, ..., NR denotes the ith radius and is equal to
√

2ai. In Table 2, we present the
values of the radii ri for NR up to 4 and the parameter s = 1. Note that the radial integral is
approximated by NR radii and their corresponding weights wRi

, i = 1, ..., NR and a zero ordinate
r0 and its corresponding weight wR0 .

*Table 2*

The inner spherical integral in (18) is over the surface of the unit sphere Sp−1 and can be approxi-
mated by the extended simplex integration method proposed by Mysovskikh (1980). It begins with
the construction of the p + 1 regular points at the vertices of the regular simplex in p dimensions

sv
j = (s1j, s2j, ..., spj), j = 1, 2, ..., p + 1, (21)
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where

sij =





−
√

p+1
p(p−i+1)(p−i+2)

, i<j√
(p+1)(p−j+1)

p(p−j+2)
, i=j

0 , i>j.

The extended simplex adds the negatives of these regular vertex points to get 2(p + 1) vertex
points. In addition, the p(p + 1)/2 midpoints of the edges joining all pairs of the original vertex
points are projected to the unit hypersphere surface. These projected points are denoted by
sm
h , h = 1, ..., p(p + 1)/2. The set {sm} which contains the projected points can be constructed
as {(vi + vj)/||vi + vj|| = (vi + vj)/

√
2 (p− 1) /p, i < j}. The weight for the regular vertex

points and their negatives is given by UpwSv = Up [p(7− p)] / [2(p + 1)2(p + 2)] , where Up = 2(π)
p
2

Γ( p
2
)

gives the surface area of the unit p-sphere, while the weight for the projected midpoints and their
negatives takes the value UpwSm = Up [2(p− 1)2] / [p(p + 1)2(p + 2)]. These extended simplex
points leads to the sphere integral approximation which has order 5. In general, this algorithm
generates (p + 1)(p + 2) points, but there are some cases in which some points are duplicated. For
instance, there are 6 instead of 12 di�erent points for p = 2 and 14 instead of 20 di�erent points
for p = 3. The duplications are clearly shown in Table 3 and Table 4, respectively. For those cases
with p > 3, there are no duplications available.

*Table 3*
*Table 4*

After the spherical-radial transformation, (20) can be written as:

E [g(β)] ≈ wR0

g(µ)

Γ(p
2
)

+

+
∑NR

i=1

wRi

Γ( p
2
)

{
wSv

[∑p+1
j=1 g(µ±Dris

v
j )

]
+ wSm

[∑ p(p+1)
2

h=1 g(µ±Dris
m
h )

]}
. (22)

Monahan and Genz (1997) showed that a mixed method which uses �xed quadrature on the
radius and randomized spherical integration is superior to the completely randomized method
which uses randomized quadrature on the radius and randomized spherical integration. Following
their results, we consider a mixed method rather than a completely randomized one. For each
nonzero radius component ri, we create NM random orthogonal matrices, {Mik}NM

k=1 and average
the values of the integrand over these orthogonal rotations. Note that Mik can be constructed
based on the approach proposed by Stewart (1980). With this approach, a p× p matrix H is �rst
generated with entries hij ∼ N(0, 1). Then the Householder transformations are used to reduce
matrix H to a upper triangular matrix R. The factorization can be expressed as H = MR from

12



which a random orthogonal matrix M is obtained. Equation (22) then becomes

E [g(β)] ≈ wR0

g(µ)

Γ(p
2
)

(23)

+
∑NR

i=1

∑NM

k=1

wRi

NMΓ( p
2
)

{
wSv

[∑p+1
j=1 g(µ±DriMiks

v
j )

]
+ wSm

[∑ p(p+1)
2

h=1 g(µ±DriMiks
m
h )

]}
.

3 Simulation Study

In this section, we compare the performance of the six sampling approaches in terms of two
measures. The �rst one is the percentage deviation of the approximated semi-Bayesian D-criterion
value from the true value. The second one is the number of times that the approximated values
fall within a certain percentage from the true value.

The semi-Bayesian D-criterion that we consider in this simulation study is based on the widely
used Fisher Information Matrix (FIM ) for the conditional logit model (McFadden 1974). The
conditional logit probability that alternative k is chosen from a choice set s is given by

pks(β) =
exp(x

′
ksβ)∑K

i=1 exp(x
′
isβ)

, k = 1, ..., K, (24)

with K the number of pro�les in each choice set, xks a p-dimensional vector characterizing the
attributes of pro�le k in choice set s, and β a p-dimensional coe�cient vector containing the e�ects
of the di�erent attribute levels on the utility. The FIM , which is the inverse of the asymptotic
covariance matrix of the maximum likelihood estimator, is given by

I(β | X) = N

S∑
s=1

X
′
s(Ps − psp

′
s)Xs, (25)

where N is the number of respondents, Xs is the design matrix for choice set s, Ps = diag
[p1s, p2s, ..., pKs] and ps = [p1s, p2s, ..., pKs]

′ .

Let π(β) denote the prior distribution used for constructing the design, then the semi-Bayesian
design criterion has the following expression:

φ(X,β) =

ˆ

<p

det [I(β | X)]−1/p π(β)dβ. (26)

The goal of this study is to compare the performance of the six methods in approximating the
criterion value in (26) and to �nd out which sampling approach is most appealing under di�erent
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conditions. To do this, we construct four scenarios (see Table 5) which di�er from each other in
the number of parameters and in the degree of prior uncertainty. The prior β is assumed to be
a multivariate normal distribution, β ∼ N(µ0,Σ0). For the 4-parameter cases which correspond
to scenarios 1 and 2, we de�ne µ0 = [−1, 0,−1, 0]

′ and Σ0 = σ2I4, where I4 is the 4-dimensional
identity matrix and σ takes the values 0.2 and 1. For the 8-parameter cases which correspond
to scenarios 3 and 4, we de�ne µ0 = [−1, 0,−1, 0,−1, 0,−1, 0]

′ and Σ0 = σ2I8, where I8 is the
8-dimensional identity matrix and σ also takes the values 0.2 and 1.

*Table 5*

The designs used for assessing the criterion value with di�erent approximation methods were
obtained in the following way. For the 4-parameter cases, we used the semi-Bayesian D-optimal
design constructed by drawing a large number of Monte Carlo samples from the multivariate
normal prior N(µ0, I4). For the 8-parameter cases, we took the best design from Sándor and
Wedel (2001). For each scenario described in Table 5, the criterion value in (26) was approximated
using the six di�erent approximations. For scenarios 1 and 2, we set the number of draws N=64,
128, 256, 512 and 1024. For scenarios 3 and 4, we set N=128, 256, 512 and 1024. These numbers
were chosen because we use 2 as the base and ESLP can only take a number of draws N which is
a power of the base. The values of N used for the randomized Halton and the MLHS approaches
were identical to those for ESLP . In order to make a fair comparison, we used similar values of
N for the Gaussian-Hermite quadrature and the SR approaches (see the footnotes in Table 6 and
Table 7). For a given type of approximation and a given number of draws N , 100 approximated
criterion values were computed by changing the draws randomly 100 times. These values are then
compared to the true one, obtained using 1, 000, 000 random Monte Carlo draws, in terms of the
percentage deviation of the approximated values from the true value. The percentage deviation is
de�ned as

PE =

∣∣φA(X, β)− φT (X, β)
∣∣

φT (X, β)
× 100, (27)

where φA(X, β) and φT (X, β) are the approximated and the true criterion values, respectively.

*Table 6*
*Table 7*

The results are summarized in Table 6 and Table 7 for scenarios 1 and 2 and scenarios 3 and 4,
respectively. The rows labeled PE show us, on average, to what extent the approximated values
deviate from the true one for a given number of draws using a given approximation method. The
remaining rows in both tables show the D(s) values, the number of times the approximated values
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fall within a certain percentage s from the true value. For example, in Table 6 with N = 64,
the row with D(0.1%) contains a value of 3 for the PMC approach, which indicates that using
the PMC approach, only 3 out of 100 approximated values are within 0.1% of the true value.
Note that the draws used in the Gaussian-Hermite quadrature method proposed by Bliemer et al.
(2008) are completely deterministic. As a result, we have only one approximated value and no
D(s)-values are available for that method.

Several conclusions can be drawn by comparing the approaches. Not surprisingly, all methods lead
to more accurate approximations under small parameter uncertainty than under large parameter
uncertainty. This implies that if the researcher is uncertain about the true parameter values, more
draws are needed. Secondly, all the sampling approaches based on the systematic draws perform
substantially better than the PMC approach in most cases we have studied. This implies that
in general, with the PMC approach, we have to use much larger sample sizes in order to achieve
the same precision as with the other approaches. In particular, with small sample sizes which are
appealing for practical use, the PMC method is not appropriate.

The SR approach based on the spherical-radial transformation in general outperforms all other
approaches. It is seen that for scenario 1 where the prior uncertainty is relatively small, with
only N ≈ 64 draws, SR approach produces an average percentage deviation of PE = 0.01%.
To achieve the same precision with the ESLP approach (the best competitor among the QMC

sequences), N = 1024 draws are needed. Note that even with N = 1024, the PMC, MLHS

and the randomized Halton sequences lead to average percentage deviations which are 29 times,
6 times and 4 times higher than the SR approach with N ≈ 64. The evaluation in terms of the
D(s) leads to the same conclusion. All the approximated values with the SR approach are within
0.01% from the true value. This is also visualized in Figure 1 and Figure 2. Figure 1 presents
the boxplot of the percentage deviations when N = 64. Figure 2 presents the results for the
D(s), with s = 0.1%, 0.2%, ..., 0.6%. For scenario 2 where the parameter uncertainty is large, the
average percentage deviation, PE, is lower with the N ≈ 64 SR draws than with the N = 512

ESLP draws and is 2.5, 1.3 and 1.1 times lower than with the N = 1024 PMC, MLHS and
the randomized Halton draws. In summary, for the 4-parameter case, the SR method performs
extremely well compared to the other methods no matter whether the prior uncertainty is small
or large. As the number of parameters increase (see Table 7 for the 8-parameter case), the SR

approach is still much better than the others when the parameter uncertainty is small. However,
the advantage of this approach decreases when the parameter uncertainty is large. It is seen that
in Scenario 4, SR performs similarly to the ESLP approach for practically small sample sizes.

*Figure 1*
*Figure 2*

When the parameter uncertainty is small, for both 4- and 8-parameter cases, the Gaussian-Hermite
quadrature closely follows (or is equally well as) the SR approach except in the case given in
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Scenario 3, with N = 128. In that case, the Gaussian-Hermite quadrature approach performs
badly. This is because this approach is poor if any of the dimensions is approximated with just one
draw. The total number of draws N = 128 is not large enough to ensure that all 8 parameters have
at least two draws. However, once the number of draws is large enough, its performance improves
dramatically (see the large change in performance in Scenario 3 from N = 128 to N = 256).
When the parameter uncertainty is large, for the 4-parameter case, the SR approach is clearly
better than the Gaussian-Hermite approach for small sample size N ≈ 64 and 128. However, the
Gaussian-Hermite approach is still better than the other approaches. With a sample size which is
larger than or equal to 256, the Gaussian method is the best. However, as the number of parameter
increases, this approach is ine�cient (see Table 7, Scenario 4).

For both 4- and 8-parameter cases, the QMC with the ESLP sequences, in general, outperforms
that with the MLHS and the randomized Halton sequences. This holds in particular when the
prior uncertainty is relatively small. When the parameter uncertainty is large, the advantage of
the ESLP approach over the MLHS and the randomized Halton sequence becomes smaller. In
addition, the performance of the ESLP sequences is comparable with and sometimes better than
that of the SR in Scenario 4 where 8 parameters were considered and the prior uncertainty is
large.

Finally, it seems that the randomized Halton sequences performs better than the MLHS approach
when the total number of draws is equal or larger than 256. For smaller sample sizes, MLHS

performs slightly better than the randomized Halton approach in most cases.

To investigate how the results depend on the designs that were chosen, we took 50 random designs
for the two scenarios in the 4-parameter case. For each random design, we computed the PE

as before. Table 8 presents the averaged PE values over the 50 random designs. These results
support our previous conclusions.

*Table 8*

4 Conclusion and Discussion

In this study, we compared the performance of six sampling approaches in approximating the
semi-Bayesian D-criterion in conjoint choice experiments. These sampling approaches include
the simple PMC approach, three QMC approaches (MLHS, randomized Halton sequences and
ESLP with Baker's transformation), the Gaussian-Hermite quadrature approach and the method
based on a spherical-radial transformation. The comparison was conducted under four scenarios
which include 4 and 8 parameters with small and large parameter uncertainty (σ = 0.2 and σ = 1).
Based on the results, we can conclude that all methods lead to more accurate approximations under
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small parameter uncertainty than under large parameter uncertainty. Therefore, when one uses a
noninformative prior, more draws are needed to achieve the same accuracy as with an informative
prior. In addition, it is shown that the PMC approach, which is commonly used for constructing
experimental choice designs, is substantially less e�cient than the other approaches in almost all
cases. With this approach, a much larger sample size is required to achieve the same precision as
with most of the other approaches. The SR method, based on the spherical-radial transformation,
seems to be the most promising approach. In the 4 parameter cases, SR leads to signi�cantly
better results than the other methods no matter whether the parameter uncertainty is large or
not. As the number of parameters increases to 8, SR is still much better than the others when
the parameter uncertainty is small. However, as the parameter uncertainty becomes large, this
approach has a similar performance to the ESLP approach for small samples sizes (N = 128, 256).
The performance of the Gaussian-Hermite quadrature depends on both the parameter uncertainty
σ and the number of draws per parameter. It is very ine�cient if the total number of draws
N is too small to allow at least 2 draws for each dimension (see Scenario 3 with N = 128).
However, when σ is small, and as long as the number of draws for each parameter is at least two,
the performance of the Gaussian-Hermite quadrature closely follows that from the SR approach.
In this case, the ESLP with Baker's transformation is less e�cient than the SR approach and
the Gaussian-Hermite quadrature, but better than the PMC, MLHS and randomized Halton
sequences. However, when σ is large, the Gaussian-Hermite quadrature is very ine�cient in the 8
parameter case and the ESLP approach becomes more attractive.

So we can conclude that for small sample sizes (64, 128 and 256), the SR approach is in general,
more e�cient than the other methods. However, the drawback of this approach is that the
number of draws grows fast with the number of parameters as the number of draws is N =

NR ×NM × (p + 1)(p + 2) + 1. As Gotwalt et al. (2008) suggested, at least two radii are required
in the approximation for the SR approach working well. This implies that even with only one
rotation (NM = 1), the number of draws required in the SR approach can be large for large p.
For example, if p = 16, then SR requires at least 613 draws to be e�cient in the approximation.
In this situation, the SR approach is not an option used for small sample sizes. The Gaussian-
Hermite quadrature approach has a similar problem. The total number of draws is computed
by N =

∏p
k=1 Nk. It has been shown that the number of draws in each dimension Nk has to

be at least 2 in order to provide reasonable e�ciency. This means that with p = 16, at least
65536 draws should be used. Therefore, the Gaussian-Hermite quadrature and SR approaches
are not practical when the dimension becomes large. As the number of draws of the ESLP with
the Baker's transformation does not depend on p, this method seems most appropriate when the
number of parameters is large.
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Table 1: Modi�ed abscissas and weights for Gaussian-Hermite integration

N ãN
i w̃N

i

1 0.0000000000 1.0000000000
2 ±1.0000000000 0.5000000000
3 0.0000000000 0.6666666667

±1.7320508075 0.1666666667
4 ±2.3344142184 0.0458758548

±0.7419637843 0.4541241452
5 0.0000000000 0.5333333333

±2.8569700139 0.0112574113
±1.3556261799 0.2220759220

6 ±3.3242574335 0.0025557844
±1.8891758777 0.0886157460
±0.6167065902 0.4088284696

Table 2: Radii and the weights for s = 1

NR i ri wRi

1 1 0.000000000000000 0.333333333333333
2 1.732050807568877 0.666666666666667

2 1 0.000000000000000 0.166666666666667
2 2.000000000000000 0.750000000000000
3 3.464101615137755 0.083333333333333

3 1 0.000000000000000 0.100000000000000
2 1.742060320814071 0.683737837696136
3 2.936522819158578 0.210073649657705
4 4.282763076707155 0.006188512646159

4 1 0.000000000000000 0.066666666666667
2 1.566373686896139 0.591414023622233
3 2.612472912279454 0.311625494160183
4 3.715559878632455 0.029944275782052
5 4.991600298892358 0.000349539768866
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Table 3: Extended simplex points in 2 dimensions

1 1.000000 0.000000
2 -0.500000 0.866025
3 -0.500000 -0.866025
4 -1.000000 0.000000
5 0.500000 -0.866025
6 0.500000 0.866025
7 0.500000 0.866025
8 0.500000 -0.866025
9 -1.000000 0.000000
10 -0.500000 -0.866025
11 -0.500000 0.866025
12 1.000000 0.000000

Table 4: Extended simplex points in 3 dimensions

1 1.000000 0.000000 0.000000
2 -0.333333 0.942809 0.000000
3 -0.333333 -0.471405 0.816497
4 -0.333333 -0.471405 -0.816497
5 -1.000000 0.000000 0.000000
6 0.333333 -0.942809 0.000000
7 0.333333 0.471405 -0.816497
8 0.333333 0.471405 0.816497
9 0.577350 0.816497 0.000000
10 0.577350 -0.408248 0.707107
11 0.577350 -0.408248 -0.707107
12 -0.577350 0.408248 0.707107
13 -0.577350 0.408248 -0.707107
14 -0.577350 -0.816497 0.000000
15 -0.577350 -0.816497 0.000000
16 -0.577350 0.408248 -0.707107
17 -0.577350 0.408248 0.707107
18 0.577350 -0.408248 -0.707107
19 0.577350 -0.408248 0.707107
20 0.577350 0.816497 0.000000

Table 5: Summary of Scenarios

Scenarios p σ
1 4 0.2
2 4 1
3 8 0.2
4 8 1

22



Table 6: Evaluation of six sampling approaches in scenarios 1 and 2

Scenario 1: 4 parameters, σ = 0.2 Scenario 2: 4 parameters, σ = 1

N PMC MLHS Halt ESLP SRa Gaub PMC MLHS Halt ESLP SRa Gaub

64

PE 1.11% 0.23% 0.29% 0.14% 0.01% 0.02% PE 7.16% 4.54% 4.40% 4.44% 0.82% 3.53%
D(0.1%) 3 21 19 36 100 - D(0.5%) 2 3 5 5 36 -
D(0.2%) 10 49 48 79 100 - D(1.0%) 10 10 11 12 65 -
D(0.3%) 14 72 61 91 100 - D(2.0%) 10 30 30 28 94 -
D(0.4%) 23 83 80 99 100 - D(3.0%) 26 40 45 44 100 -
D(0.5%) 30 92 84 100 100 - D(4.0%) 37 53 61 58 100 -
D(0.6%) 33 96 93 100 100 - D(5.0%) 46 66 70 67 100 -

128

PE 0.71% 0.16% 0.20% 0.11% 0.01% 0.01% PE 5.36% 3.12% 3.06% 3.02% 0.70% 1.99%
D(0.1%) 6 29 33 55 100 - D(0.5%) 9 8 8 13 43 -
D(0.2%) 16 63 61 85 100 - D(1.0%) 14 18 15 24 78 -
D(0.3%) 19 91 78 97 100 - D(2.0%) 25 36 40 38 99 -
D(0.4%) 31 97 87 100 100 - D(3.0%) 34 50 59 60 100 -
D(0.5%) 44 100 92 100 100 - D(4.0%) 48 69 73 74 100 -
D(0.6%) 49 100 97 100 100 - D(5.0%) 57 87 81 85 100 -

256

PE 0.52% 0.12% 0.10% 0.03% 0.01% 0.01% PE 3.62% 2.01% 1.95% 1.66% 0.62% 0.12%
D(0.1%) 19 47 60 100 100 - D(0.5%) 9 27 20 23 45 -
D(0.2%) 27 80 85 100 100 - D(1.0%) 16 41 30 39 78 -
D(0.3%) 35 99 98 100 100 - D(2.0%) 36 56 60 73 100 -
D(0.4%) 40 100 100 100 100 - D(3.0%) 49 76 80 84 100 -
D(0.5%) 51 100 100 100 100 - D(4.0%) 64 87 88 94 100 -
D(0.6%) 55 100 100 100 100 - D(5.0%) 76 92 95 96 100 -

512

PE 0.37% 0.08% 0.06% 0.02% 0.00% 0.00% PE 2.46% 1.53% 1.28% 0.90% 0.52% 0.10%
D(0.1%) 16 74 80 100 100 - D(0.5%) 17 17 29 38 50 -
D(0.2%) 34 99 100 100 100 - D(1.0%) 32 35 47 65 92 -
D(0.3%) 52 100 100 100 100 - D(2.0%) 53 69 81 95 100 -
D(0.4%) 60 100 100 100 100 - D(3.0%) 67 91 95 99 100 -
D(0.5%) 73 100 100 100 100 - D(4.0%) 79 99 98 99 100 -
D(0.6%) 82 100 100 100 100 - D(5.0%) 86 99 99 99 100 -

1024

PE 0.29% 0.06% 0.04% 0.01% 0.00% 0.00% PE 2.04% 1.07% 0.94% 0.65% 0.40% 0.10%
D(0.1%) 21 84 96 100 100 - D(0.5%) 13 22 40 50 54 -
D(0.2%) 41 98 100 100 100 - D(1.0%) 30 55 66 85 99 -
D(0.3%) 60 100 100 100 100 - D(2.0%) 57 89 88 95 100 -
D(0.4%) 72 100 100 100 100 - D(3.0%) 78 99 97 98 100 -
D(0.5%) 90 100 100 100 100 - D(4.0%) 89 100 99 99 100 -
D(0.6%) 92 100 100 100 100 - D(5.0%) 95 100 100 100 100 -

a For the SR approach, we used N = 61, 121, 241, 481, 1021.
b For the Gaussian-Hermite quadrature approach, we used N = 64, 120, 256, 480, 1024.

23



Table 7: Evaluation of six sampling approaches in scenarios 3 and 4

Scenario 3: 8 parameters, σ = 0.2 Scenario 4: 8 parameters, σ = 1

N PMC MLHS Halt ESLP SRa Gaub PMC MLHS Halt ESLP SRa Gaub

128

PE 0.57% 0.19% 0.24% 0.12% 0.01% 0.76% PE 4.46% 3.04% 3.09% 2.8% 2.09% 14.36%
D(0.1%) 11 30 30 49 100 - D(0.5%) 6 11 10 12 19 -
D(0.2%) 23 54 54 81 100 - D(1.0%) 12 26 24 25 31 -
D(0.3%) 31 76 70 96 100 - D(2.0%) 29 45 41 44 55 -
D(0.4%) 41 92 78 100 100 - D(3.0%) 45 55 55 65 71 -
D(0.5%) 50 96 86 100 100 - D(4.0%) 57 71 69 74 88 -
D(0.6%) 57 100 92 100 100 - D(5.0%) 67 80 81 87 96 -

256

PE 0.36% 0.12% 0.12% 0.04% 0.01% 0.03% PE 3.03% 1.97% 1.93% 1.90% 1.81% 7.00%
D(0.1%) 18 47 50 93 100 - D(0.5%) 7 15 13 12 14 -
D(0.2%) 37 86 85 100 100 - D(1.0%) 20 28 32 30 27 -
D(0.3%) 54 96 96 100 100 - D(2.0%) 37 55 57 63 63 -
D(0.4%) 65 98 99 100 100 - D(3.0%) 58 66 79 85 81 -
D(0.5%) 73 100 100 100 100 - D(4.0%) 71 84 87 94 95 -
D(0.6%) 78 100 100 100 100 - D(5.0%) 84 93 95 95 99 -

512

PE 0.26% 0.10% 0.08% 0.03% 0.00% 0.02% PE 2.35% 1.61% 1.34% 1.30% 1.57% 5.09%
D(0.1%) 23 60 71 99 100 - D(0.5%) 13 24 23 26 19 -
D(0.2%) 49 90 95 100 100 - D(1.0%) 25 41 47 45 37 -
D(0.3%) 62 97 99 100 100 - D(2.0%) 49 68 75 77 69 -
D(0.4%) 79 99 100 100 100 - D(3.0%) 73 82 95 95 91 -
D(0.5%) 87 100 100 100 100 - D(4.0%) 84 96 96 100 98 -
D(0.6%) 93 100 100 100 100 - D(5.0%) 88 98 100 100 100 -

1024

PE 0.20% 0.07% 0.05% 0.02% 0.00% 0.01% PE 1.54% 1.04% 0.97% 0.92% 1.40% 3.89%
D(0.1%) 33 77 89 100 100 - D(0.5%) 25 38 31 42 25 -
D(0.2%) 56 97 100 100 100 - D(1.0%) 38 57 59 63 40 -
D(0.3%) 74 100 100 100 100 - D(2.0%) 70 83 90 91 70 -
D(0.4%) 87 100 100 100 100 - D(3.0%) 93 95 98 97 95 -
D(0.5%) 94 100 100 100 100 - D(4.0%) 97 99 99 100 99 -
D(0.6%) 98 100 100 100 100 - D(5.0%) 100 100 100 100 100 -

a For the SR approach, we used N = 181, 271, 541, 991.
b For the Gaussian-Hermite quadrature approach, we used N = 128, 256, 576, 1152.
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Table 8: Evaluation of six sampling approaches with 50 random designs in terms of PE values for
scenarios 1 and 2

Scenario 1
N PMC MLHS Halt ESLP SR Gau

64 0.92% 0.21% 0.30% 0.12% 0.01% 0.01%
128 0.63% 0.14% 0.16% 0.09% 0.01% 0.01%
256 0.47% 0.09% 0.09% 0.03% 0.01% 0.01%

Scenario 2
N PMC MLHS Halt ESLP SR Gau

64 6.94% 4.10% 4.12% 3.68% 0.59% 2.53%
128 4.68% 2.58% 2.53% 2.53% 0.44% 1.29%
256 3.40% 1.79% 1.73% 1.46% 0.34% 0.11%

Figure 1: Percentage deviations of the approximated values from the true value in Scenario 1 with
N = 64
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Figure 2: The number of times that the approximated values fall within a certain percentage of
the true value in Scenario 1 with N = 64
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