29 research outputs found

    A short survey on Kantorovich-like theorems for Newton's method

    No full text
    We survey influential quantitative results on the convergence of the Newton iterator towards simple roots of continuously differentiable maps defined over Banach spaces. We present a general statement of Kantorovich's theorem, with a concise proof from scratch, dedicated to wide audience. From it, we quickly recover known results, and gather historical notes together with pointers to recent articles

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Brain Dynamics From Mathematical Perspectives: A Study of Neural Patterning

    Get PDF
    The brain is the central hub regulating thought, memory, vision, and many other processes occurring within the body. Neural information transmission occurs through the firing of billions of connected neurons, giving rise to a rich variety of complex patterning. Mathematical models are used alongside direct experimental approaches in understanding the underlying mechanisms at play which drive neural activity, and ultimately, in understanding how the brain works. This thesis focuses on network and continuum models of neural activity, and computational methods used in understanding the rich patterning that arises due to the interplay between non-local coupling and local dynamics. It advances the understanding of patterning in both cortical and sub-cortical domains by utilising the neural field framework in the modelling and analysis of thalamic tissue – where cellular currents are important in shaping the tissue firing response through the post-inhibitory rebound phenomenon – and of cortical tissue. The rich variety of patterning exhibited by different neural field models is demonstrated through a mixture of direct numerical simulation, as well as via a numerical continuation approach and an analytical study of patterned states such as synchrony, spatially extended periodic orbits, bumps, and travelling waves. Linear instability theory about these patterns is developed and used to predict the points at which solutions destabilise and alternative emergent patterns arise. Models of thalamic tissue often exhibit lurching waves, where activity travels across the domain in a saltatory manner. Here, a direct mechanism, showing the birth of lurching waves at a Neimark-Sacker-type instability of the spatially synchronous periodic orbit, is presented. The construction and stability analyses carried out in this thesis employ techniques from non-smooth dynamical systems (such as saltation methods) to treat the Heaviside nature of models. This is often coupled with an Evans function approach to determine the linear stability of patterned states. With the ever-increasing complexity of neural models that are being studied, there is a need to develop ways of systematically studying the non-trivial patterns they exhibit. Computational continuation methods are developed, allowing for such a study of periodic solutions and their stability across different parameter regimes, through the use of Newton-Krylov solvers. These techniques are complementary to those outlined above. Using these methods, the relationship between the speed of synaptic transmission and the emergent properties of periodic and travelling periodic patterns such as standing waves and travelling breathers is studied. Many different dynamical systems models of physical phenomena are amenable to analysis using these general computational methods (as long as they have the property that they are sufficiently smooth), and as such, their domain of applicability extends beyond the realm of mathematical neuroscience

    Brain Dynamics From Mathematical Perspectives: A Study of Neural Patterning

    Get PDF
    The brain is the central hub regulating thought, memory, vision, and many other processes occurring within the body. Neural information transmission occurs through the firing of billions of connected neurons, giving rise to a rich variety of complex patterning. Mathematical models are used alongside direct experimental approaches in understanding the underlying mechanisms at play which drive neural activity, and ultimately, in understanding how the brain works. This thesis focuses on network and continuum models of neural activity, and computational methods used in understanding the rich patterning that arises due to the interplay between non-local coupling and local dynamics. It advances the understanding of patterning in both cortical and sub-cortical domains by utilising the neural field framework in the modelling and analysis of thalamic tissue – where cellular currents are important in shaping the tissue firing response through the post-inhibitory rebound phenomenon – and of cortical tissue. The rich variety of patterning exhibited by different neural field models is demonstrated through a mixture of direct numerical simulation, as well as via a numerical continuation approach and an analytical study of patterned states such as synchrony, spatially extended periodic orbits, bumps, and travelling waves. Linear instability theory about these patterns is developed and used to predict the points at which solutions destabilise and alternative emergent patterns arise. Models of thalamic tissue often exhibit lurching waves, where activity travels across the domain in a saltatory manner. Here, a direct mechanism, showing the birth of lurching waves at a Neimark-Sacker-type instability of the spatially synchronous periodic orbit, is presented. The construction and stability analyses carried out in this thesis employ techniques from non-smooth dynamical systems (such as saltation methods) to treat the Heaviside nature of models. This is often coupled with an Evans function approach to determine the linear stability of patterned states. With the ever-increasing complexity of neural models that are being studied, there is a need to develop ways of systematically studying the non-trivial patterns they exhibit. Computational continuation methods are developed, allowing for such a study of periodic solutions and their stability across different parameter regimes, through the use of Newton-Krylov solvers. These techniques are complementary to those outlined above. Using these methods, the relationship between the speed of synaptic transmission and the emergent properties of periodic and travelling periodic patterns such as standing waves and travelling breathers is studied. Many different dynamical systems models of physical phenomena are amenable to analysis using these general computational methods (as long as they have the property that they are sufficiently smooth), and as such, their domain of applicability extends beyond the realm of mathematical neuroscience

    Rekonstruktion, Analyse und Editierung dynamisch deformierter 3D-Oberflächen

    Get PDF
    Dynamically deforming 3D surfaces play a major role in computer graphics. However, producing time-varying dynamic geometry at ever increasing detail is a time-consuming and costly process, and so a recent trend is to capture geometry data directly from the real world. In the first part of this thesis, I propose novel approaches for this research area. These approaches capture dense dynamic 3D surfaces from multi-camera systems in a particularly robust and accurate way. This provides highly realistic dynamic surface models for phenomena like moving garments and bulging muscles. However, re-using, editing, or otherwise analyzing dynamic 3D surface data is not yet conveniently possible. To close this gap, the second part of this dissertation develops novel data-driven modeling and animation approaches. I first show a supervised data-driven approach for modeling human muscle deformations that scales to huge datasets and provides fine-scale, anatomically realistic deformations at high quality not attainable by previous methods. I then extend data-driven modeling to the unsupervised case, providing editing tools for a wider set of input data ranging from facial performance capture and full-body motion to muscle and cloth deformation. To this end, I introduce the concepts of sparsity and locality within a mathematical optimization framework. I also explore these concepts for constructing shape-aware functions that are useful for static geometry processing, registration, and localized editing.Dynamisch deformierbare 3D-Oberflächen spielen in der Computergrafik eine zentrale Rolle. Die Erstellung der für Computergrafik-Anwendungen benötigten, hochaufgelösten und zeitlich veränderlichen Oberflächengeometrien ist allerdings äußerst arbeitsintensiv. Aus dieser Problematik heraus hat sich der Trend entwickelt, Oberflächendaten direkt aus Aufnahmen der echten Welt zu erfassen. Dazu nötige 3D-Rekonstruktionsverfahren werden im ersten Teil der Arbeit entwickelt. Die vorgestellten, neuartigen Verfahren erlauben die Erfassung dynamischer 3D-Oberflächen aus Mehrkamera-Aufnahmen bei hoher Verlässlichkeit und Präzision. Auf diese Weise können detaillierte Oberflächenmodelle von Phänomenen wie in Bewegung befindliche Kleidung oder sich anspannende Muskeln erfasst werden. Aber auch die Wiederverwendung, Bearbeitung und Analyse derlei gewonnener 3D-Oberflächendaten ist aktuell noch nicht auf eine einfache Art und Weise möglich. Um diese Lücke zu schließen beschäftigt sich der zweite Teil der Arbeit mit der datengetriebenen Modellierung und Animation. Zunächst wird ein Ansatz für das überwachte Lernen menschlicher Muskel-Deformationen vorgestellt. Dieses neuartige Verfahren ermöglicht eine datengetriebene Modellierung mit besonders umfangreichen Datensätzen und liefert anatomisch-realistische Deformationseffekte. Es übertrifft damit die Genauigkeit früherer Methoden. Im nächsten Teil beschäftigt sich die Dissertation mit dem unüberwachten Lernen aus 3D-Oberflächendaten. Es werden neuartige Werkzeuge vorgestellt, die eine weitreichende Menge an Eingabedaten verarbeiten können, von aufgenommenen Gesichtsanimationen über Ganzkörperbewegungen bis hin zu Muskel- und Kleidungsdeformationen. Um diese Anwendungsbreite zu erreichen stützt sich die Arbeit auf die allgemeinen Konzepte der Spärlichkeit und Lokalität und bettet diese in einen mathematischen Optimierungsansatz ein. Abschließend zeigt die vorliegende Arbeit, wie diese Konzepte auch für die Konstruktion von oberflächen-adaptiven Basisfunktionen übertragen werden können. Dadurch können Anwendungen für die Verarbeitung, Registrierung und Bearbeitung statischer Oberflächenmodelle erschlossen werden
    corecore